Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Vibro-Acoustic CAE from an Industrial Application Perspective

2005-01-19
2005-26-050
Vibro-acoustic simulation methods such as FEM and BEM have made an enormous progress for modelling and describing the acoustic and vibro-acoustic behaviour of mechanical systems. In order to make these techniques truly become part of the “virtual” industrial design process however, the specific challenges related to industrial-sized problems must be overcome. The paper reviews the critical issues to building and solving large-scale problems and discusses practical aspects such as the correct load definition and simulation performance requirements and improvements. Some breakthrough solutions like Acoustic Transfer Vectors and parallel computing are discussed. Specific attention is devoted to the potential of hybrid methods combining virtual models with experimental data. The discussed are illustrated by means of powertrain noise and vibration case studies.
Technical Paper

Experimental and Numerical Modelling of Friction Induced Noise in Disc Brakes

2002-03-04
2002-01-1192
Friction-induced vibration is a serious problem in many industrial applications containing systems with rotating and/or sliding parts. Brake noise is a typical example. The critical element in the noise generation process is the combination of friction-induced loads with the dynamics of the braking system. In the present paper, a detailed experimental and numerical study of a specific low-frequency brake squeal problem is made on a simplified brake noise test rig. First, the signal and spatial characteristics of the noise were analyzed by spectral and acoustic holography techniques. A parametric study of influence factors as brake pressure, rotation speed, etc. was made. Operational deformation analysis during squeal confirms the dominant modal behavior of the components, implying the critical role of the assembly structural dynamics.
Technical Paper

Application of a Modular Vehicle Noise and Vibration Development Approach

2001-01-10
2001-26-0037
The paper addresses the problem of NVH development of vehicles. An approach for the specification and assessment of subsystem performance as well as of the early part of the integration process is presented hereto. The basic technologies applied are those of Transfer Path Analysis and System Synthesis. Various applications to industrial problems are discussed.
Technical Paper

Experimental and Hybrid Modeling of the Medium Frequency Behaviour of Car Panels

2001-01-10
2001-26-0041
This paper discusses an approach to identify critical car panels and to derive detailed experimental models for these critical panels. The research was conducted in the framework of the Brite/Euram project SALOME and the EUREKA project HOLOMODAL. The panel identification method is based on a numerical or experimental contribution analysis, assessing the partial noise contributions of individual panels to the interior noise. The second step in the approach consists of the derivation of detailed modal analysis models for the critical panels. A novel Electronic Speckle Pattern Interferometry (ESPI) system was developed, and integrated in a classical CAE system. The components of this system are briefly reviewed, and their application to several industrial cases is shown.
Technical Paper

Structural Modelling of Car Panels Using Holographic Modal Analysis

1999-05-17
1999-01-1849
In order to optimise the vibro-acoustic behaviour of panel-like structures in a more systematic way, accurate structural models are needed. However, at the frequencies of relevance to the vibro-acoustic problem, the mode shapes are very complex, requiring a high spatial resolution in the measurement procedure. The large number of required transducers and their mass loading effects limit the applicability of accelerometer testing. In recent years, optical measuring methods have been proposed. Direct electronic (ESPI) imaging, using strobed continuous laser illumination, or more recently, pulsed laser illumination, have lately created the possibility to bring the holographic testing approach to the level of industrial applicability for modal analysis procedures. The present paper discusses the various critical elements of a holographic ESPI modal testing system.
X