Refine Your Search

Topic

Search Results

Technical Paper

An Effect of Cooled-EGR on Diesel Engine Performance Fueled with Coconut-oil Methyl Ester

2020-01-24
2019-32-0618
The purpose of this study is to explore an effect of cooled-EGR on the diesel engine performance fueled with coconut-oil methyl ester (CME). The exhaust gas was cooled by the water at room temperature and was fed to the intake manifold, and the EGR rate was changed from 0 % to 30 % at every 10 %. The engine performances were measured at several EGR rates, fuel injection pressures and timings. Test fuels were CME and commercial diesel fuel. In the case of high EGR rate at which the compression ignition was deteriorated, the ignition timing of CME was always earlier than that of diesel fuel, therefore CME had good ignitability as compared with diesel fuel under EGR application. When the fuel injection pressure was increased at high EGR rate, the ignition delay was improved by the fuel atomization and air-fuel mixing effect.
Technical Paper

An Effect of Bio Diesel Fuel for Low Compression Ratio Diesel Engine

2017-11-05
2017-32-0088
The purpose of this study is to explore an effect of the coconut oil methyl ester (CME) and vegetable oil methyl ester (VME) on a low compression ratio diesel engine performance. CME and VME were produced from coconut oil and vegetable oil with methanol, respectively. Vegetable oil was assumed to contain 60 wt.% of soybean oil and 40 wt.% rapeseed oil. The engine performance was measured in the steady operating condition at 3600 rpm of engine speed. The ignition timings of CME and VME were advanced and the maximum cylinder pressures of CME and VME were higher as compared with the diesel fuel at low compression ratio, because CME and VME consisted of medium chain fatty acid methyl esters. The ignitability of CME was superior to VME, because CME consisted of saturated fatty acid. The brake thermal efficiency of diesel fuel was slightly higher than CME and VME at any compression ratios.
Technical Paper

Influence of Combustion Chamber Wall Temperature on Combustion in an HCCI Engine Using an Alternative Fuel

2015-11-17
2015-32-0790
Internal combustion engines today are required to achieve even higher efficiency and cleaner exhaust emissions. Currently, research interest is focused on premixed compression ignition (Homogeneous Charge Compression Ignition, HCCI) combustion. However, HCCI engines have no physical means of initiating ignition such as a spark plug or the fuel injection timing and quantity. Therefore, it is difficult to control the ignition timing. In addition, combustion occurs simultaneously at multiple sites in the combustion chamber. As a result, combustion takes place extremely rapidly especially in the high load region. That makes it difficult for the engine to operate stably at high loads. This study focused on the fuel composition as a possible means to solve these problems. The effect of using fuel blends on the HCCI operating region and combustion characteristics was investigated using a single-cylinder test engine.
Technical Paper

A Study of Supercharged HCCI Combustion Using Blended Fuels of Propane and DME

2014-11-11
2014-32-0005
Homogeneous Charge Compression Ignition (HCCI) has attracted a great deal of interest as a combustion system for internal combustion engines because it achieves high efficiency and clean exhaust emissions. However, HCCI combustion has several issues that remain to be solved. For example, it is difficult to control engine operation because there is no physical means of inducing ignition. Another issue is the rapid rate of heat release because ignition of the mixture occurs simultaneously at multiple places in the cylinder. The results of previous investigations have shown that the use of a blended fuel of DME and propane was observed that the overall combustion process was delayed, with that combustion became steep when injected propane much. This study focused on expanding the region of stable engine operation and improving thermal efficiency by using supercharging and blended fuels. The purpose of using supercharging were in order to moderated combustion.
Technical Paper

A Study of the Mechanism Producing Autoignition in an HCCI Engine Using In-Cylinder Spectroscopy and Chemical Kinetic Simulation

2012-10-23
2012-32-0079
This study examined Homogeneous Charge Compression Ignition (HCCI) combustion characteristics in detail on the basis of in-cylinder combustion visualization, spectroscopic measurements of light emission and absorption and chemical kinetic simulations. Special attention was focused on investigating and comparing the effects of the fuel octane number and residual gas on combustion characteristics. The results made clear the relationship between the production/consumption of formaldehyde (HCHO) in the HCCI autoignition process and flame development behavior in the cylinder. Additionally, it was found that both the fuel octane number and residual gas have the effect of moderating low-temperature oxidation reactions. Furthermore, it was observed that residual gas has the effect of shifting the temperature for the occurrence of the hot flame to a higher temperature range.
Technical Paper

A Spectroscopic Study of the Effects of Multicomponent Fuel Blends on Supercharged HCCI Combustion

2012-10-23
2012-32-0080
The growing severity of global environmental issues in recent years, including air pollution and the depletion of fossil fuels, has made it necessary for internal combustion engines to achieve higher efficiency and lower exhaust emission levels. Calls for reducing atmospheric emissions of carbon dioxide (CO₂) necessitate thoroughgoing measures to lower the levels of CO₂ originating in the combustion process of internal combustion engines and to facilitate operation on diverse energy sources. Homogeneous Charge Compression Ignition (HCCI) combustion has attracted widespread interest because it achieves high efficiency and can reduce particulate matter (PM) and nitrogen oxide (NOx) emissions simultaneously. These characteristics are obtainable because HCCI combustion can take place at ultra-lean conditions exceeding the limits of flame propagation.
Journal Article

A Study of HCCI Combustion Using Spectroscopic Measurements and Chemical Kinetic Simulations: Effects of Fuel Composition, Engine Speed and Cylinder Pressure on Low-temperature Oxidation Reactions and Autoignition

2011-11-08
2011-32-0524
The Homogenous Charge Compression Ignition (HCCI) engine is positioned as a next-generation internal combustion engine and has been the focus of extensive research in recent years to develop a practical system. One reason is that this new combustion system achieves lower fuel consumption and simultaneous reductions of nitrogen oxide (NOx) and particulate matter (PM) emissions, which are major issues of internal combustion engines today. However, the characteristics of HCCI combustion can prevent suitable engine operation owing to the rapid combustion process that occurs accompanied by a steep pressure rise when the amount of fuel injected is increased to obtain higher power output. A major issue of HCCI is to control this rapid combustion so that the quantity of fuel injected can be increased for greater power. Controlling the ignition timing is also an issue because it is substantially influenced by the chemical reactions of the fuel.
Technical Paper

A Study on Influence of Forced Over Cooling on Diesel Engine Performance

2011-11-08
2011-32-0605
The ignitability and engine performance of FAMEs at the cold condition were experimentally investigated by using two FAMEs, i.e. coconut oil methyl ester (CME) and soybean oil methyl ester (SME). The cold start test and forced over cooling test were conducted. In the forced over cooling test, engine was forced cooled by the injecting water mist to engine cooling fin. In the cold start test, the cylinder pressure of CME rose earliest because CME has a superior ignitability. The crank angle at ignitions of diesel fuel and CME were not so affected by the forced over cooling, however ignition timing of SME was remarkably delayed. In cases of forced over cooling, COV of maximum combustion pressure of CME was lower than that of normal air cooling condition. The forced over cooling has a potential to reduce NOx emission, however HC, CO and smoke concentrations were increased in a high load due to incomplete combustion.
Technical Paper

Study on Performance of Diesel Engine Applied with Emulsified Diesel Fuel: The Influence of Fuel Injection Timing and Water Contents

2011-11-08
2011-32-0606
The application of emulsified fuel for diesel engines is expected to reduce NOx and soot simultaneously. The purpose of this study is to clarify the influence of water content in emulsified fuel and fuel injection timing on diesel engine performance. The engine performance of emulsified fuel was compared with the water injection method. In the water injection test, water was injected to intake manifold and diesel fuel was directly injected into combustion chamber. Two emulsified fuels of which mixing ratio of water and emulsifier to diesel fuel were 15 and 30 vol.% were tested. Engine performance and exhaust gas emission of water injection method were almost similar to those of diesel fuel, so that water presented in combustion chamber had almost no influence on engine performance. Therefore, it can be considered that the micro explosion of fuel droplet enhanced the fuel atomization and mixing of fuel and air.
Technical Paper

Spectroscopic Study of Two-Stage High Temperature Heat Release Behavior in a Supercharged HCCI Engine using Blended Fuels

2011-08-30
2011-01-1788
This study examined the effects of fuel composition and intake pressure on two-stage high temperature heat release characteristics of a Homogeneous Charge Compression Ignition (HCCI) engine. Light emission and absorption spectroscopic measurement techniques were used to investigate the combustion behavior in detail. Chemical kinetic simulations were also conducted to analyze the reaction mechanisms in detail. Blended fuels of dimethyl ether (DME) and methane were used in the experiments. It was found that the use of such fuel blends together with a suitable intake air flow rate corresponding to the total injected heat value gave rise to two-stage heat release behavior of the hot flame, which had the effect of moderating combustion. The results of the spectroscopic measurements and the chemical kinetic simulations revealed that the main reaction of the first stage of the hot flame heat release was one that produced CO from HCHO.
Journal Article

A Study of Ignition Characteristics of an HCCI Engine Operating on a Two-component Fuel

2010-09-28
2010-32-0098
The Homogenous Charge Compression Ignition (HCCI) engine is positioned as a next-generation internal combustion engine and has been the focus of extensive research in recent years to develop a practical system. One reason is that this new combustion system achieves lower fuel consumption and simultaneous reductions of nitrogen oxide (NOx) and particulate matter (PM) emissions, which are major issues of internal combustion engines today. However, the characteristics of HCCI combustion can prevent suitable engine operation owing to the rapid combustion process that occurs accompanied by a steep pressure rise when the amount of fuel injected is increased to obtain higher power output. A major issue of HCCI is to control this rapid combustion so that the quantity of fuel injected can be increased for greater power. Controlling the ignition timing is also an issue because it is substantially influenced by the chemical reactions of the fuel.
Journal Article

Optical Measurement of Autoignition and Combustion Behavior in an HCCI Engine

2010-09-28
2010-32-0089
In this study, optical measurements were made of the combustion chamber gas during operation of a Homogeneous Charge Compression Ignition (HCCI) engine in order to obtain a better understanding of the ignition and combustion characteristics. The principal issues of HCCI engines are to control the ignition timing and to optimize the combustion state following ignition. Autoignition in HCCI engines is strongly influenced by the complex low-temperature oxidation reaction process, alternatively referred to as the cool flame reaction or negative temperature coefficient (NTC) region. Accordingly, a good understanding of this low-temperature oxidation reaction process is indispensable to ignition timing control. In the experiments, spectroscopic measurement methods were applied to investigate the reaction behavior in the process leading to autoignition.
Technical Paper

Analysis of Knocking in an SI Engine based on In-cylinder: Spectroscopic Measurements and Visualization

2010-09-28
2010-32-0092
There are strong demands today to further improve the thermal efficiency of internal combustion engines against a backdrop of various environmental issues, including rising carbon dioxide (CO2) emissions and global warming. One factor that impedes efforts to improve the thermal efficiency of spark ignition engines is the occurrence of knocking. The aim of this study was to elucidate the details of knocking based on spectroscopic measurements and visualization of phenomena in the combustion chamber of a test engine that was operated on three primary reference fuels with different octane ratings (0 RON, 30 RON, and 50 RON). The ignition timing was retarded in the experiments to delay the progress of flame propagation, making it easier to capture the behavior of low-temperature oxidation reactions at the time knocking occurred.
Journal Article

A Study of HCCI Combustion using Spectroscopic Techniques and Chemical Kinetic Simulations

2009-11-03
2009-32-0070
This study was conducted to investigate the influence of low-temperature reactions on the Homogeneous Charge Compression Ignition (HCCI) combustion process. Specifically, an investigation was made of the effect of the residual gas condition on low-temperature reactions, autoignition and the subsequent state of combustion following ignition. Light emission and absorption spectroscopic measurements were made in the combustion chamber in order to investigate low-temperature reactions in detail. In addition, chemical kinetic simulations were performed to validate the experimental results and to analyze the elemental reaction process. The results made clear the formation behavior of the chemical species produced during low-temperature HCCI reactions.
Technical Paper

Influence of Various Biodiesel Fuels on Diesel Engine Performance

2009-11-03
2009-32-0100
The composition ratio of saturated and unsaturated fatty acid methyl esters (FAME) is depended on feedstock. Three FAMEs: soybean (SME), palm (PME) and coconut oil (CME) methyl esters were mixed to make fuels which have different composition ratio. The ignitability of fuel which mainly consisted of unsaturated FAME was inferior. Power was slightly reduced with increasing of mixing ratio of CME; however exhaust gas emissions were improved because CME contained a lot of oxygen atoms. Fuel which was equal mixture SME and CME indicated almost the same ignition characteristic as that of PME because they have same composition ratio.
Technical Paper

The Effect of Corona Discharge on Pre-Mixed Combustion

2009-11-03
2009-32-0095
The flame propagation behavior of hydrogen-air and propane-air mixtures under application of high-voltage non-uniform electric field was explored by using combustion vessel. Both mixtures were ignited by laser-induced breakdown of Nd:YAG laser. In a case of propane-air mixture, top of flame front was drawn to the electrode and bottom of flame front was expanded. In a case of hydrogen-air mixture, the wrinkle caused by the preferential diffusion was enhanced by corona discharge, however the entire flame front was merely moved toward downward by corona wind. Therefore, the non-uniform electric field strongly influences charged particles originated in hydrocarbon of propane-air mixture.
Technical Paper

Application of Newly Developed Cellulosic Liquefaction Fuel for Diesel Engine

2009-11-03
2009-32-0132
A new bio-fuel i.e. the cellulosic liquefaction fuel (CLF) was developed for diesel engines. CLF was made from woods by direct liquefaction process. When neat CLF was supplied to diesel engine, the compression ignition did not occur, so that blend of CLF and diesel fuel was used. The engine could be operated when the mixing ratio of CLF was up to 35 wt%. CO, HC and NOx emissions were almost the same as those of diesel fuel when the mixing ratio of CLF was less than 20 wt% whereas the thermal efficiency slightly decreases with increase in CLF mixing ratio.
Technical Paper

Light Emission and Absorption Spectroscopic Study of HCCI Combustion

2009-06-15
2009-01-1846
In this study, light emission and absorption spectroscopic measurement techniques were used to investigate the Homogeneous Charge Compression Ignition (HCCI) combustion process in detail, about which there have been many unclear points heretofore. The results made clear the formation behavior and wavelength bands of the chemical species produced during low-temperature reactions. Specifically, with a low level of residual gas, a light emission band was observed from a cool flame in a wavelength range of 370–470 nm. That is attributed to the light emission of formaldehyde (HCHO) produced in the cool-flame reactions. Additionally, it was found that these light emission spectra were no longer observable when residual gas was applied. The light emission spectra of the combustion flame thus indicated that residual gas has the effect of moderating cool-flame reactions.
Technical Paper

A Study of HCCI Combustion Using a Two-Stroke Gasoline Engine with a High Compression Ratio

2006-11-13
2006-32-0043
In this study, it was shown that Homogeneous Charge Compression Ignition (HCCI) combustion in a 4-stroke engine, operating under the conditions of a high compression ratio, wide open throttle (WOT) and a lean mixture, could be simulated by raising the compression ratio of a 2-stroke engine. On that basis, a comparison was then made with the characteristics of Active Thermo-Atmosphere Combustion (ATAC), the HCCI process that is usually accomplished in 2-stroke engines under the conditions of a low compression ratio, partial throttle and a large quantity of residual gas. One major difference observed between HCCI combustion and ATAC was their different degrees of susceptibility to the occurrence of cool flames, which was attributed to differences in the residual gas state. It was revealed that the ignition characteristics of these two combustion processes differed greatly in relation to the fuel octane number.
Technical Paper

A Comparative Study of HCCI and ATAC Combustion Characteristics Based on Experimentation and Simulations Influence of the Fuel Octane Number and Internal EGR on Combustion

2005-10-24
2005-01-3732
Controlled Autoignition (CAI) combustion processes can be broadly divided between a CAI process that is applied to four-stroke engines and a CAI process that is applied to two-stroke engines. The former process is generally referred to as Homogeneous Charge Compression Ignition (HCCI) combustion and the later process as Active Thermo-Atmosphere Combustion (ATAC). The region of stable engine operation differs greatly between these two processes, and it is thought that the elucidation of their differences and similarities could provide useful information for expanding the operation region of HCCI combustion. In this research, the same two-stroke engine was operated under both the ATAC and HCCI combustion processes to compare their respective combustion characteristics. The results indicated that the ignition timing was less likely to change in the ATAC process in relation to changes in the fuel octane number than it was in the HCCI combustion process.
X