Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Comparison of the Responses of the Thorax and Pelvis of the GHBMC M50 -O Using Two Different Foam Materials in a High-Speed Rear Facing Frontal Impact Scenario

2024-04-09
2024-01-2647
Due to the lack of biofidelity seen in GHBMC M50-O in rear-facing impact simulations involving interaction with the seat back in an OEM seat, it is important to explore how the boundary conditions might be affecting the biofidelity and potentially formulate methods to improve biofidelity of different occupant models in the future while also maintaining seat validity. This study investigated the influence of one such boundary condition, which is the seat back foam material properties, on the thorax and pelvis kinematics and injury outcomes of the GHBMC 50th M50-O model in a high-speed rear-facing frontal impact scenario, which involves severe occupant loading of the seat back. Two different seat back foam materials were used – a stiff foam with high densification and a soft foam with low densification. The peak magnitudes of the T-spine resultant accelerations of the GHBMC M50-O increased with the use of soft foam as compared to stiff foam.
Technical Paper

An Assessment of the Tesla Model 3's Forward Collision Warning and Automatic Emergency Braking Systems against a Stationary Pedestrian Target

2024-04-09
2024-01-2482
A total of 93 tests were conducted in daytime conditions to evaluate the effect on the Time to Collision (TTC), emergency braking, and avoidance rates of the Forward Collision Warning (FCW) and Automatic Emergency Braking (AEB) provided by a 2022 Tesla Model 3 against a 4ActivePA adult static pedestrian target. Variables that were evaluated included the vehicle speed on approach, pedestrian offsets, pedestrian clothing, and user-selected FCW settings. As a part of the Tesla’s Collision Avoidance AssistTM, these user-selected FCW settings change the timing of the issuance of the visual and/or audible warning provided. This testing evaluated the Tesla at speeds of 25 and 35 miles per hour (mph) versus a stationary pedestrian target in early, medium, and late FCW settings. Testing was also conducted with a 50% pedestrian offset and 75% offset conditions relative to the right side of the Tesla.
Journal Article

Assessing the Impact of Rubberized Asphalt on Reducing Hip Fracture Risk in Elderly Populations Using Human Body Models

2024-04-08
Abstract Compared to other age groups, older adults are at more significant risk of hip fracture when they fall. In addition to the higher risk of falls for the elderly, fear of falls can reduce this population’s outdoor activity. Various preventive solutions have been proposed to reduce the risk of hip fractures ranging from wearable hip protectors to indoor flooring systems. A previously developed rubberized asphalt mixture demonstrated the potential to reduce the risk of head injury. In the current study, the capability of the rubberized asphalt sample was evaluated for the risk of hip fracture for an average elderly male and an average elderly female. A previously developed human body model was positioned in a fall configuration that would give the highest impact forces toward regular asphalt.
Standard

SAE Child Passenger Safety Glossary

2024-03-01
CURRENT
J2939_202403
To harmonize and define terminology associated with occupant protection for children for vehicle manufacturers and child restraint manufacturers in the United States and Canada.
Technical Paper

Importance of Pole Side Impact Test for Assessment of Curtain Airbags

2024-01-16
2024-26-0019
Government of India, in 2017, mandated a Side Impact Test (AIS 099 technically aligned to UN ECE Regulation No. 95.03 series of amendments) on M1 category Passenger Vehicles to ensure protection of occupants in lateral impact accident scenarios. Later, in 2022, a draft notification has been issued by the Government mandating installation of 6 airbags (2 Nos of thorax side airbags, 2 Nos of head protection or curtain airbags in addition to already mandated installation of Driver and Passenger Airbags) in all such passenger vehicles. However, the vehicles fitted with side thorax airbag and curtain airbags are proposed to be assessed as per AIS099 test only. Curtain Airbags are typically installed to protect occupant’s head from severe injuries in narrow object impacts simulated in Pole Side Impact Test Configurations. However, at present, India has not notified an equivalent standard to UN R135 demanding performance of the vehicle in pole side impact scenarios.
Technical Paper

Integration and Optimization of Geneva Mechanism in the Car Door Handle

2024-01-16
2024-26-0285
The car door handle is an essential component of any vehicle, as it plays a crucial role in providing access to the cabin and ensuring safety of the passenger. The primary function of the car door handle is to allow entry and exit from the vehicle while preventing unauthorized access. In addition to this, car door handles also play a critical role in ensuring passenger safety by keeping the door closed during accidents or when there is a significant amount of G-force acting on the vehicle. A typical car door handle comprises several components including the structure, cover, bowden lever, bracket, pins and other child parts. The structure provides the ergonomics and rigidity for grabbing the handle, while the cover gives the handle an aesthetic appearance. The Bowden lever facilitates the unlatching of the door and the intermediate parts ensure that the handle operates smoothly.
Technical Paper

Seatback Failures and Human Tolerance in Severe Rear Impacts

2024-01-16
2024-26-0003
Seatback and head restraints are the primary restraining devices in rear-impact collisions. The seatback failures expose front seat occupants to dive deep into the rear compartment survival space. Furthermore, it allows the occupants to get in a position with lower spinal tolerance to the impact direction. This paper employs sled tests to demonstrate the dangers of seatback failures in severe rear impact by allowing the occupants to orient their spine in its lowest tolerance zone to the impact direction. Furthermore, the sled test shows the potential of head pocketing phenomena and torso augmentation producing compressive cervical spine loading enough to cause first-order neck buckling. Finally, the results of collapsing seatback dynamics are compared to the strong seatback performance by conducting a similar test with a strong ABTS seatback.
Technical Paper

The ICE Model: Evaluating In-Cockpit Child-Centric Interaction Solutions

2023-12-31
2023-01-7085
Effective smart cockpit interaction design can address the specific needs of children, offering ample entertainment and educational resources to enhance their on-board experience. Currently, substantial attention is focused on smart cockpit design to enrich the overall travel engagement for children. Recognizing the contrasts between children and adults in areas such as physical health, cognitive development, and emotional psychology, it becomes imperative to meticulously customize the design and optimization processes to cater explicitly to their individual requirements. However, a noticeable gap persists in both research methodologies and product offerings within this domain.
Journal Article

Effect of Torso Boundary Conditions on Spine Kinematic and Injury Responses in Head-First Impact Assessed with a 50th Percentile Male Human Body Model

2023-09-20
Abstract Computational and experimental studies have been undertaken to investigate injurious head-first impacts (HFI), which can occur during automotive rollovers. Recent studies assume a torso surrogate mass (TSM) boundary condition, wherein the first or first two thoracic vertebrae are potted and constrained to only move in the vertical loading direction. The TSM boundary condition has not been compared with a full body (FB) model computationally or experimentally for HFI. In this study, the Global Human Body Models Consortium 50th percentile male detailed human body model (M50-O, Version 6.0) was applied to compare the kinematic, kinetic, and injury response of an HFI with a TSM boundary condition (M50-TSM), and a full body boundary condition (M50-FB). Impacts (to M50-TSM and M50-FB) were simulated between the head and a rigid plate using a commercial FE code (LS-DYNA).
Journal Article

Improved Predictions of Human Rib Structural Properties Using Bone Mineral Content

2023-09-20
Abstract Rib fractures are associated with high rates of morbidity and mortality. Improved methods to assess rib bone quality are needed to identify at-risk populations. Quantitative computed tomography (QCT) can be used to calculate volumetric bone mineral density (vBMD) and bone mineral content (BMC), which may be related to rib fracture risk. The objective of this study was to determine if vBMD and BMC from QCT predict human rib structural properties. 127 mid-level (5th–7th) ribs were obtained from adult female (n = 67) and male (n = 60) postmortem human subjects (PMHS). Isolated rib QCT scans were performed to calculate vBMD and BMC.
Journal Article

Evaluation of Skin Penetration from Less Lethal Impact Munitions and Their Associated Risk Predictors

2023-09-20
Abstract Introduction: The use of less lethal impact munitions (LLIMs) by law enforcement has increased in frequency, especially following nationwide protests regarding police brutality and racial injustice in the summer of 2020. There are several reports of the projectiles causing severe injuries when they penetrate the skin including pulmonary contusions, bone fractures, liver lacerations, and, in some cases, death. The penetration threshold of skin in different body regions is due to differences in the underlying structure (varying degree of muscle, adipose tissue, and presence or absence of bone). Objective: The objective of this study was to further investigate what factors affected the likelihood of skin penetration in various body regions and to develop corresponding penetration risk curves.
Journal Article

The Impact of Seat Belt Pretensioner Deployment on Forward-Leaning Occupants

2023-09-20
Abstract Pyrotechnic seat belt pretensioners typically remove 8–15 cm of belt slack and help couple an occupant to the seat. Our study investigated pretensioner deployment on forward-leaning, live volunteers. The forward-leaning position was chosen because research indicates that passengers frequently depart from a standard sitting position. Characteristics of the 3D kinematics of forward-leaning volunteers following pretensioner deployment determines if body size is correlated with subject response. Nine adult subjects (three female), ages 18–43 years old, across a wide range of body sizes (50–120 kg) were tested. The age was limited to young, active adults as pyrotechnic pretensioners can deliver a notable force to the trunk. Subjects assumed a forward-leaning position, with 26 cm between C7 and the headrest, in a laboratory setting that replicated the passenger seat of a vehicle.
Journal Article

Comparison of Head, Neck, and Chest Injury Risks between Front- and Rear-Seated Hybrid III 50th-Percentile Male ATDs in Matched Frontal NCAP Tests

2023-09-19
Abstract The objective of this study was to compare head, neck, and chest injury risks between front and rear-seated Hybrid III 50th-percentile male anthropomorphic test devices (ATDs) during matched frontal impacts. Seven vehicles were converted to rear seat test bucks (two sedans, three mid-size SUVs, one subcompact SUV, and one minivan) and then used to perform sled testing with vehicle-specific frontal NCAP acceleration pulses and a rear seated (i.e., second row) Hybrid III 50th male ATD. Matched front seat Hybrid III 50th male ATD data were obtained from the NHTSA Vehicle Crash Test Database for each vehicle. HIC15, Nij, maximum chest acceleration, and maximum chest deflection were compared between the front and rear seat tests, as well as between vehicles with conventional and advanced three-point belt restraint systems in the rear seat. Additionally, a modified version of the NCAP frontal star rating was calculated for the front and rear seat tests.
Collection

Stapp Papers 2022 , Electronic

2023-06-27
This title includes the technical papers developed for the 2022 Stapp Car Crash Conference, the premier forum for the presentation of research in impact biomechanics, human injury tolerance, and related fields, advancing the knowledge of land-vehicle crash injury protection. The conference provides an opportunity to participate in open discussion about the causes and mechanisms of injury, experimental methods and tools for use in impact biomechanics research, and the development of new concepts for reducing injuries and fatalities in automobile crashes.
Journal Article

Development and Validation of a Dynamic Abdominal Pressure Twin Sensor Finite Element Model

2023-06-07
Abstract Some anthropomorphic test devices (ATDs) currently being developed are equipped with abdominal pressure twin sensors (APTS) for the assessment of abdominal injuries and as an indicator of the occurrence of the submarining of an occupant during a crash event. The APTS is comprised of a fluid-filled polyurethane elastomeric bladder which is sealed by an aluminum cap with an implanted pressure transducer. It is integrated into ATD abdomens, and fluid pressure is increased due to the abdomen/bladder compression due to interactions with the seatbelt or other structures. In this article, a nonlinear dynamic finite element (FE) model is constructed of an APTS using LS-PrePost and converted to the LS-Dyna solver input format. The polyurethane bladder and the internal fluid are represented with viscoelastic and isotropic hypoelastic material models, respectively. The aluminum cap was considered a rigid part since it is significantly stiffer than the bladder and the fluid.
Standard

Passenger Safety Information System

2023-06-05
CURRENT
ARP1384E
These recommendations are to aid the international air transport industry by identifying a standard, minimum amount of safety instructions and procedures that should be provided in the PSIS. Aircraft operators are encouraged to customize the PSIS to their own operations. This document also provides recommendations for: a Passenger safety information briefings and associated materials, b Demonstration emergency equipment, c Ensuring passenger suitability for those seated in exit seats, d The standardization of safety briefings for passengers seated at exits who may be responsible for opening exits on transport aircraft during an emergency, and e A standardized protective brace position to reduce the severity of injury during severe turbulence, rapid deceleration, or a sudden impact.
Technical Paper

Core Deflection for Pre-mold with Over-mold Injection Molding in Moldex-3D

2023-05-25
2023-28-1351
Side door latches in an automotive play a major role in occupants’ safety. The latches consist of both retention assembly and actuator assembly. The actuator assembly majorly consists of motor, gear & other components and these are protected through a Plastic Lower case and Housing. The Lower case (over-mold) with the Electrical Component Carrier - ECC (pre-mold) plays an important role in providing electrical power supply to the latch system. Since these parts are manufactured with terminal traces & plastics, upfront mold flow simulations help the product teams to evaluate the short fills, warpage, and other quality aspects in the critical areas of these components. In the part assembly station, the ECC (pre-mold) and the Lower case (over-mold) are connected to the Motor on one side and the Connector on the other. The proper alignment of the pre-mold pins is of great importance and the pre-mold must not be externally visible once the molding is complete.
Standard

User’s Manual for the Small Adult Female Hybrid III Test Dummy

2023-05-22
CURRENT
J2862_202305
This user’s manual covers the small adult female Hybrid III test dummy. It is intended for technicians who work with this device. It covers the construction and clothing, disassembly and reassembly, available instrumentation, external dimensions and segment masses, as well as certification and inspection test procedures. It includes instructions for safe handling of the instrumented dummy, repairing dummy flesh, and adjusting the joints throughout the dummy.
Standard

Hybrid III Ten-Year Old Child Dummy User’s Manual

2023-05-01
CURRENT
J2858_202305
This user's manual covers the Hybrid III 10-year old child test dummy. The manual is intended for use by technicians who work with this test device. It covers the construction and clothing, assembly and disassembly, available instrumentation, external dimensions and segment masses, as well as certification and inspection test procedures. It includes guidelines for handling accelerometers, guidelines for flesh repair, and joint adjustment procedures. Finally, it includes drawings for some of the test equipment that is unique to this dummy.
X