Refine Your Search

Topic

Author

Search Results

Video

BMW Technology/Strategy Regarding EV

2011-11-04
The BMW Group has introduced electric cars to the market with the MINI E already in 2009. The next step will be the launch of the BMW ActiveE in 2011, followed by the revolutionary Mega City Vehicle in 2013. The presentation will explain the BMW Group strategy for implementing sustainable mobility. A focus will be emobility, the use of carbon fiber and the holistic sustainability approach of BMW Group?s project i. Reference will be made to the research results of the MINI E projects in the US and in Europe. Presenter Andreas Klugescheid, BMW AG
Technical Paper

Model-Based Calibration of an Automotive Climate Control System

2020-04-14
2020-01-1253
This paper describes a novel approach for modeling an automotive HVAC unit. The model consists of black-box models trained with experimental data from a self-developed measurement setup. It is capable of predicting the temperature and mass flow of the air entering the vehicle cabin at the various air vents. A combination of temperature and velocity sensors is the basis of the measurement setup. A measurement fault analysis is conducted to validate the accuracy of the measurement system. As the data collection is done under fluctuating ambient conditions, a review of the impact of various ambient conditions on the HVAC unit is performed. Correction models that account for the different ambient conditions incorporate these results. Numerous types of black-box models are compared to identify the best-suited type for this approach. Moreover, the accuracy of the model is validated using test drive data.
Journal Article

Development of a High Performance Natural Gas Engine with Direct Gas Injection and Variable Valve Actuation

2017-09-04
2017-24-0152
Natural gas is a promising alternative fuel for internal combustion engine application due to its low carbon content and high knock resistance. Performance of natural gas engines is further improved if direct injection, high turbocharger boost level, and variable valve actuation (VVA) are adopted. Also, relevant efficiency benefits can be obtained through downsizing. However, mixture quality resulting from direct gas injection has proven to be problematic. This work aims at developing a mono-fuel small-displacement turbocharged compressed natural gas engine with side-mounted direct injector and advanced VVA system. An injector configuration was designed in order to enhance the overall engine tumble and thus overcome low penetration.
Journal Article

Achieving a Scalable E/E-Architecture Using AUTOSAR and Virtualization

2013-04-08
2013-01-1399
Today's automotive software integration is a static process. Hardware and software form a fixed package and thus hinder the integration of new electric and electronic features once the specification has been completed. Usually software components assigned to an ECU cannot be easily transferred to other devices after they have been deployed. The main reasons are high system configuration and integration complexity, although shifting functions from one to another ECU is a feature which is generally supported by AUTOSAR. The concept of a Virtual Functional Bus allows a strict separation between applications and infrastructure and avoids source code modifications. But still further tooling is needed to reconfigure the AUTOSAR Basic Software (BSW). Other challenges for AUTOSAR are mixed integrity, versioning and multi-core support. The upcoming BMW E/E-domain oriented architecture will require all these features to be scalable across all vehicle model ranges.
Technical Paper

The Particle Number Counter as a “Black Box” - A Novel Approach to a Universal Particle Number Calibration Standard for Automotive Exhaust

2020-09-15
2020-01-2195
The reduction of vehicle exhaust particle emissions is a success story of European legislation. Various particle number (PN) counters and calibration procedures serve as tools to enforce PN emission limits during vehicle type approval (VTA) or periodical technical inspection (PTI) of in-use vehicles. Although all devices and procedures apply to the same PN-metric, they were developed for different purposes, by different stakeholder groups and for different target costs and technical scopes. Furthermore, their calibration procedures were independently defined by different stakeholder communities. This frequently leads to comparability and interpretation issues. Systematic differences of stationary and mobile PN counters (PN-PEMS) are well-documented. New, low-cost PTI PN counters will aggravate this problem. Today, tools to directly compare different instruments are scarce.
Technical Paper

Experimental Investigations and Computations of Unsteady Flow Past a Real Car Using a Robust Elliptic Relaxation Closure with a Universal Wall Treatment

2007-04-16
2007-01-0104
In the present work we investigated experimentally and computationally the unsteady flow around a BMW car model including wheels*. This simulation yields mean flow and turbulence fields, enabling the study aerodynamic coefficients (drag and lift coefficients, three-dimensional/spatial wall-pressure distribution) as well as some unsteady flow phenomena in the car wake (analysis of the vortex shedding frequency). Comparisons with experimental findings are presented. The computational approach used is based on solving the complete transient Reynolds-Averaged Navier-Stokes (TRANS) equations. Special attention is devoted to turbulence modelling and the near-wall treatment of turbulence. The flow calculations were performed using a robust, eddy-viscosity-based ζ - ƒ turbulence model in the framework of the elliptic relaxation concept and in conjunction with the universal wall treatment, combining integration up to the wall and wall functions.
Technical Paper

A New Methodology for Improving Accuracy of Structural Analysis of Car Body Parts

1998-09-29
982336
The Finite Element Analysis (FEA) is widely used in automotive industry for many applications, such as structural analysis, computational fluid dynamics (CFD), vibration behavior and acoustic properties, crashworthiness and, more recently, manufacturing process simulation. For all these FEA applications, accuracy is always a key issue. The analysis accuracy depends mainly on two factors: on one hand the FEA codes and on the other hand the definition of boundary conditions and material properties. Over the years, most FEA codes are well tested for accuracy through numerous benchmarks: therefore breakthroughs in further accuracy improvement from the aspect of FEA codes are difficult to achieve. On the other aspect, there is some room for FEA improvement by means of more accurate definition of material properties. In this paper, a new methodology for improving analysis accuracy by considering thickness variations of the component is proposed and validated using a structural body part.
Technical Paper

Considerations Implementing a Dual Voltage Power Network

1998-10-19
98C008
Innovative electric systems demand a new approach for the distribution of electric energy in passenger cars. This paper describes a very promising solution-the dual voltage power network with an upper voltage level of 42V, and the considerations which led to the selection of this voltage level. Owing to the significant impact on the industry, a common standard is required. Depending on their profile, OEMs will select their own strategies for implementation, either as a base for innovation or to enhance overall system efficiency. This will lead to different approaches and timeframes.
Technical Paper

Software tools and methods for the practice-oriented PDM integration of design and diagnostics of mechatronic systems in vehicles

2000-06-12
2000-05-0114
a practice-oriented approach for an accelerated product development and product design process for mechatronic systems is presented. The handling of complex and versatile product data to perform this process is shown in the area of electrical drives and actuators in cars. It is discussed, how the coordination of all the necessary disciplines as development, design, testing field, specification and release management should be software supported and PDM integrated. The advantages and benefits of the presented methods are shown on particular examples. The necessary software modules are introduced, showing that the realized solution gives both opportunities - the integration into a PDM backbone and at the same time an independent communication within department and/or company. The practical way, to realize the expert-specific needs of the development department, which is not possible with a general PDM system is pointed out.
Technical Paper

Stationary Model to Predict Performance of the Car Air Conditioning System Using Only Standard Components Data

2001-03-05
2001-01-0589
A stationary model of a car air conditioning system was developed to evaluate refrigerant, mechanical power and all the fluid properties along the circuit. The model requires only the characteristics of the constituents, which are normally available from suppliers. This approach enables estimation of system performance with satisfactory accuracy, already during the design approach, and allows to determine the most appropriate components in order to meet target requirements with a satisfactory balance of the refrigerant circuit.
Technical Paper

Noise analysis and modeling with neural networks and genetic algorithms

2000-06-12
2000-05-0291
The aim of the project is to reliably identify the set of constructive features responsible for the highest noise levels in the interior of motor vehicles. A simulation environment based on artificial intelligence techniques such as neural networks and genetic algorithms has been implemented. We used a system identification approach in order to approximate the functional relationship between the target noise series and the sets of constructive parameters corresponding to the cars. The noise levels were measured with a microphone positioned on the driver''s chair, and corresponded to a variation of the engine rotation of 600-900 rot/min. The database includes 45 different cars, each described by vectors of 67 constructive features.
Technical Paper

How to Achieve Functional Safety and What Safety Standards and Risk Assessment Can Contribute

2004-03-08
2004-01-1662
In this contribution functional safety is discussed from a car manufacturer's point of view. Typical elements of a safety standard concerning safety activities during the product development process are described as well as management and other supporting processes. Emphasis is laid on the aspect of risk assessment and the determination of safety classes. Experiences with methods for safety analysis like FTA or FMEA are discussed and pros and cons of quantitative safety assessment are argued.
Technical Paper

Virtual testing driven development process for side impact safety

2001-06-04
2001-06-0251
A new simulation tool was established and approved by TRW as part of the continuous improvement of the development process. This tool allows the OEM and the system supplier to keep high quality even with further reduced development times. The introduction of the tool in a side air-bag development program makes it possible to ensure high development confidence with a reduced number of vehicle crash tests and late availability of interior component parts.
Technical Paper

Simulation Tools and Evaluation Criteria for Steering Wheel Feel Improvement of an Electric Power Steering System

2002-05-07
2002-01-1593
Centro Ricerche Fiat in collaboration with Fiat Auto vehicle test department has developed a numerical-experimental procedure in order to support on-road development and fine tuning of a new car with electric power steering. The integration of an electric power steering model, given by the supplier, in a full vehicle model, in order to evaluate steering feel objective quality indices, has allowed to improve vehicle performance in term of steering feel and reduce on-road development time.
Technical Paper

Customer Orientation in Advanced Vehicle Design

2002-05-07
2002-01-1576
The attention to the perceived quality, e.g. the quality as it is evaluated by the final customer, is becoming more and more important for the car makers. The paper will describe how such aspects of handling and steering system feel may become manageable by an engineering process, through some fundamental steps: definition of measurable performance for the subjective aspects; identification of the target values for such aspects coherent with product positioning; deployment of such overall values generally fixed at vehicle level into functional requirements for the different subsystems and design specifications (sub targets level quantities). This new approach at car advanced design represents an evolution of the traditional one based on some general criteria and experienced designers; it has the aims of reducing time to market and guaranteeing a “customer oriented handwriting” in handling behaviour and steering feel.
Technical Paper

The Seat Thermal-Hygrometric Performance Measurement and Its Correlation With Perceived Comfort

2001-10-01
2001-01-3432
The air conditioning system is becoming more and more a competitive issue, moving from optional to standard vehicle equipment. Therefore, also thermal comfort level is moving from simple air temperature measurement to a more systemic approach, where the contribution of every element of the car cabin has to be taken in account. Improving contact thermal sensation with the seat is one of the main issues to improve overall thermal comfort in transportation. A method has been defined to assess the perceived thermal quality of seats taking into account the sweating human thermoregulatory process. The method is based on a thermal manikin representing a torso able to simulate in a portion of the back the sweating phenomena. The first part of the paper is focused on the instrument and developed measuring method description. The second part is dedicated to detail the correlation between experimental measurements and subjective quality index obtained during an extensive on-road panel test.
Technical Paper

Soft Air Diffusion to Improve the Thermal Comfort - a Design Approach Based on CFD Tool and Virtual Thermal Manikin

2001-10-01
2001-01-3439
The cabin comfort is one of the most competitive issues in the automotive area of business. The thermal comfort and the environmental well-being are fundamental performances that contribute to generate the more general idea of perceived quality. The CRF developed in the past the concept so-called “healthy bubble” that was implemented in the Lancia Dialogos concept car. The passengers are surrounded by an air bubble, created by generating low velocity air flows, that are diffused through the interior panels and components (e.g. dashboard, roof, back of the seats, etc.), and by surfaces temperature control (e.g. carpet, seats, etc.). At present the original idea has generally been accepted, and different solutions to diffuse air and to control surface temperature of vehicle interiors have been proposed by some automotive supplier.
Technical Paper

Preliminary results on emissions and driving behavior of ATENA fleet test project in Naples

2001-09-23
2001-24-0083
One of the objectives of the Atena project was the definition of methods for the predictive evaluation of the environmental impact of different types of vehicles used in an urban scenario. The target is to obtain a methodology that allows the decision maker to verify in simulation the effects of possible measures like the law enforcement to the access restrictions or vehicle fleet composition. The main obstacle is the realization and managing of real driving cycles in order to overtake the limits derived from the utilization of typical cycles (i.e., ECE + EUDC) or the simple consideration of average speed. The starting point is a digital representation of the urban network where all the roads are represented with one or more arcs and for all these arcs are available an estimation of the traffic variables like the vehicle flow (vehicles per hour) or the average speed (kph). Every arc is described in terms of traffic parameters like the type of road (i.e., highway, district road).
Technical Paper

On Board Diagnosis of A/C System Refrigerant Charge Level

2002-03-04
2002-01-0231
The air conditioning system of a car uses the reverse Carnot thermodynamic cycle of a refrigerant gas. The fluids normally used have at least a direct impact on global warming, so their losses have to be avoided. A very simple method to detect refrigerant charge level was developed, using few standard sensors. Results show that it is possible to have an estimation of system charge level with satisfactory accuracy, and seems able to avoid complete loss of refrigerant.
Technical Paper

The New BMW Climatic Testing Complex - The Energy and Environment Test Centre

2011-04-12
2011-01-0167
The Energy and Environment Test Centre (EVZ) is a complex comprising three large climatic wind tunnels, two smaller test chambers, nine soak rooms and support infrastructure. The capabilities of the wind tunnels and chambers are varied, and as a whole give BMW the ability to test at practically all conditions experienced by their vehicles, worldwide. The three wind tunnels have been designed for differing test capabilities, but share the same air circuit design, which has been optimized for energy consumption yet is compact for its large, 8.4 m₂, nozzle cross-section. The wind tunnel test section was designed to meet demanding aerodynamic specifications, including a limit on the axial static pressure gradient and low frequency static pressure fluctuations - design parameters previously reserved for larger aerodynamic or aero-acoustic wind tunnels. The aerodynamic design was achieved, in-part, by use of computational fluid dynamics and a purpose-built model wind tunnel.
X