Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Fatigue Life Prediction of HVAC Pipe Assembly for Measured Powertrain Load by Virtual Simulation

2020-04-14
2020-01-0188
Structural durability of automotive components is one of the key requirements in design and development of today’s automobiles. Virtual simulations are used to estimate component durability to save the cost and time required to build the components and testing. The objective of this work is to find the service life of automotive HVAC pipe assembly by calculating cumulative fatigue life for operation under actual powertrain load conditions. Modal transient response analysis is performed with the measured powertrain load time history. Strain based fatigue life analysis is carried out using modal superposition method (MSM). The estimated fatigue life was compared with the physical test results. This paper also explains the root cause of low fatigue life on pipe assembly and provide the solution.
Technical Paper

Effect of Casting Process on Strength Behaviour of Automotive Alloy Wheel

2021-04-06
2021-01-0800
Strength and fatigue assessment of chassis components are essentially influenced by the material used and manufacturing processes chosen. The manufacturing process of chassis components decides the variation in the mechanical properties of the component, which has an impact on the strength/fatigue performance. Investigating the design concerning the manufacturing processes is vital to the industry. Standard computer aided engineering (CAE) procedures for validating the alloy wheels usually consider the material properties as homogeneous. There was a gap between test results and CAE durability prediction (as per standard procedure). Incorporating the manufacturing process related characteristics with the strength simulation will be a viable solution to reduce this gap. This study was intended at developing a procedure for the strength analysis of an alloy wheel by considering the manufacturing process.
Technical Paper

Air Bind Effect on Door Slam Durability Performance

2021-04-06
2021-01-0822
In the vehicle development process, the door slam durability assessment is of significant importance in the estimation of fatigue life for body closure system. So far, various exertions have been taken into consideration to better represent the door slam simulation for door durability performance. Nowadays, with computer aided engineering (CAE) being extensively implemented, simulation procedures are constantly being investigated in order to get precise outcomes as physical testing. In a real world scenario, the customer closes the door frequently against the sealed cabin which offers the cabin pressure to close. The cabin pressure acts in the opposite direction of door closing providing the damping effect and minimizes the overall damage to the structure. Currently, simulations are focused on determining the total energy required for closing the door by summing up the energy lost in the weather seal and latch.
Technical Paper

Dynamic Transient Simulation to Predict Durability Loads from Road Load Profile under Linear Assumptions

2021-04-06
2021-01-0831
Structural durability of the vehicle components is one of the key factors in design and development. This helps in understanding the capability of structures or components to withstand the loads encountered in service over a specified period of use. Durability assessment for vehicle structures requires load inputs. These load inputs can be in form of force, acceleration and displacement and typically generated from road load profiles in the testing lab or by the load groups. But if a program is in its early stage when design data is immature or lab facility is limited then acquiring these load inputs takes time and sometimes not feasible also. In this scenario, we can predict the durability load inputs from road load profiles virtually using dynamic transient simulation. The objective of this work is to predict the durability input signals from road profiles using finite element model by modal transient approach.
Technical Paper

Parametric Design Study of McPherson Strut to Stabilizer Bar Link Bracket Weld Fatigue Using Design for Six Sigma and Taguchi Approach

2021-04-06
2021-01-0235
Vehicle suspension parts are subjected to variable road loads, manufacturing process variation and high installation loads in assembly process. Seam welding can be considered as such process to connect more components and parts. Typical in a Mc Pherson suspension system stabilizer bar link is connected to the strut assembly through ball stud and clamped to a bracket welded to the outer strut tube. Cracks have been observed in the stabilizer bar link bracket welds of vehicles in the field, effecting the functionality of the suspension system. During preliminary phase of product development CAE assessment of the seam weld is carried out against road load data, if the design does not meet the targets enabler studies are carried out in an iterative approach. Various design variables (control factors) can be considered to carry out the iterations.
X