Refine Your Search

Topic

Author

Search Results

Journal Article

Integrated Chassis Control for Improving On-Center Handling Behavior

2014-04-01
2014-01-0139
This paper proposes a new integrated chassis control (ICC) using a predictive model-based control (MPC) for optimal allocation of sub-chassis control systems where a predictive model has 6 Degree of Freedom (DoF) for rigid body dynamics. The 6 DoF predictive vehicle model consists of longitudinal, lateral, vertical, roll, pitch, and yaw motions while previous MPC research uses a 3 DoF maximally predictive model such as longitudinal, lateral and yaw motions. The sub-chassis control systems in this paper include four wheel individual braking torque control, four wheel individual driving torque control and four corner active suspension control. Intermediate control inputs for sub-chassis control systems are simplified as wheel slip ratio changes for driving and braking controls and vertical suspension force changes for an active suspension control.
Journal Article

Development of Virtual Road Wheel Input Forces for Belgian Ground

2014-04-01
2014-01-0381
Numerical durability analysis is the only approach that can be used to assess the durability of vehicles in early stages of development. In these stages, where there are no physical prototypes available, the road wheel forces (or spindle forces) for durability testing on Belgian PG (Proving Ground) must be predicted by VPG (Virtual Proving Ground) or derived from the measured forces of predecessor vehicles. In addition, the tuning parts and geometry are not fixed at these stages. This results in the variation of spindle forces during the development stages. Therefore, it is not reasonable to choose the forces predicted at a specific tuning condition as standard forces. It is more reasonable to determine the standard forces stochastically using the DB of the measured forces of predecessor vehicles. The spindle forces measured or predicted on Belgian PG are typically stationary random.
Technical Paper

Design of A Light Weight Suspension Component Using CAE

1998-02-23
980901
In this paper, a design procedure for the optimized light weight front cross member, which is a sub frame of the car chassis, without sacrificing basic functional requirements is presented. As the first step, optimal structural integrity was calculated and extracted using a CAE technique with the available volume constraint of the package layout. Quantitative design loads for the cross member was achieved by measurement. Dynamic load analysis using ADAMS was also performed to determine the loads. Later, these calculated loads were applied to the FEM stress analysis of the cross member. Furthermore, durability analysis was also performed using load profile database measured from ‘Hyundai Motor Co. Proving Ground’. Four constant amplitude durability tests and two static tests were performed on the cross member prototypes to confirm design reliability.
Technical Paper

Development of primerless paintable thermoplastic polyolefin with high impact strength for vehicle interior parts

2000-06-12
2000-05-0151
A new thermoplastic polyolefin with primerless adhesion to paint has been developed by polypropylene (PP) with α-olefin copolymers, mineral fillers and some additives. It can substantially reduce costs and environmental problems by eliminating primer treating operations, traditionally treated from trichloroethene (TCE). This new material exhibits unique solid-state texture that rubbery polymer component are typically dispersed in lamellar structure matrix. Versus conventional PP or thermoplastic olefin (TPO), it provides excellent brittle-ductile (BD) transition as well as paintability. Also it is expected to have a significant impact on interior parts as requirements for material change to an emphasis on light weight, lower cost, more efficient finishing.
Technical Paper

Low-pressure molding compound hood panel for a passenger car

2000-06-12
2000-05-0110
Low-pressure molding compound (LPMC) is a new kind of composite material which can be used for automotive body panels. LPMC has similar mechanical properties compared to conventional sheet molding compound (SMC) but excellent moldability due to the different thickening system. In this paper, we prepared LPMC hood prototype for a passenger car using a low-cost tooling. Inner panel and outer panel were made of general-density- and low-density-grade LPMC, respectively, in order to maximize weight reduction maintaining surface quality. Physical properties containing tensile strength, flexural modulus, notched Izod impact strength of those samples were investigated. In addition, CAE simulation was also done for strength analysis of the hood assembly.
Technical Paper

Invisible PAB Door Development Using Two-shot Molding

2010-04-12
2010-01-0684
Invisible Passenger-side Airbag (IPAB) door system must be designed with a weakened area such that the airbag will break through the Instrument Panel (IP) in the intended manner, with no flying debris at any temperature. At the same time, there must be no cracking or sharp edges at the head impact test (ECE 21.01). Needless to say, Head impact test must keep pace with the deployment test. In this paper, we suggested soft airbag door system that is integrally molded with a hard instrument panel by using Two-shot molding. First of all, we set up the design parameters of IPAB door for the optimal deployment and head impact performance by CAE analysis. And then we optimized the open-close time at each gate of the mold so that the soft and hard material could be integrally molded with the intended boundary. We could make the boundary of two materials more constant by controlling the open-close time of each gate with resin temperature sensor.
Technical Paper

Scavenger free three-way catalyst with low hydrogen sulfide emission

2000-06-12
2000-05-0308
This study suggests new types of catalysts that show low hydrogen sulfide emission without scavenger such as NiO. Hydrogen sulfide can be reduced by changing the physicochemical properties of washcoat components. Synthesized gas activity tests were performed to investigate the effect of modified washcoat on hydrogen sulfide formation and catalytic activity. BET surface area tests, X- ray diffraction tests, and gas chromatography tests were also carried out to examine the characteristics of catalysts. Preparation methods for catalysts were focused on minimizing the adsorption of sulfur species on catalysts. The first approach is heat treatment of cerium oxide to reduce adsorption sites for sulfur compounds. But this leads to deterioration of CO and NOx conversion efficiencies. The second one is adding new types of promoters that increase thermal durability and dynamic oxygen storing function of cerium oxide.
Technical Paper

Analysis of an Automotive Ground System Based on a Ground Model and Current Distribution in it

2004-03-08
2004-01-1598
Ground systems in automobiles become more important as more electric devices are installed and the amount of currents flowing increases. The performance of the devices depends on the ground voltage, which is generated between ground points by I-R voltage drops. Therefore, low ground voltages are required for the reduction of the unnecessary power dissipation as well as the reliable performance of the devices. In this paper, we propose an automotive ground system model to analyze ground structure and reveal the main cause of ground voltages. The equivalent resistor network model is presented to describe the relationship between ground points. Then, we validate the model by comparing the simulation results with the measurements in a real car. The presented analysis can provide guidance on designing a reliable ground system such as how to reduce the ground voltages for the proper operation of devices.
Technical Paper

Semi-Active Steering Wheel for Steer-By-Wire System

2001-10-01
2001-01-3306
Conventional steering system has a mechanical connection between the driver and the front tires of the vehicle, but in steer-by-wire system, there is no such a connection. Instead, actuators, positioned in the vehicle's front corners receive input from the control module and turn the front wheels accordingly. In steer-by-wire system, steering wheel is an important part that not only transfers driver's steering input to the controller but also provides a road feedback feeling to the driver's hand. Thus the reactive torque actuator, providing road feedback, plays an important role in steer-by-wire system. In conventional steer-by-wire-system, a motor was used as a reactive torque actuator. But using motor has some disadvantages such as an oscillatory feeling, and improper and potentially dangerous acceleration of the steering wheel by the motor when driver's hands are released from steering wheel abruptly.
Technical Paper

Body Optimization for Front Loading Design Process

2014-04-01
2014-01-0388
An innovative design process is proposed to be applicable in the early conceptual design phase as a means of front loading design. The objective of the study is to minimize trial and errors in the detailed design phase and to shorten the overall design period. The process includes design optimization which is based on efficient modeling techniques. An integrated CAD/CAE modeling method and a simplified quality FE model are key factors in the course of effectuation. The conceptual modeling takes into account the adaptability of computer-generated models with the use of CAD/CAE integrated design environment. To achieve maximum efficiency in the repeated computations in optimization, an FE modeling approach is introduced in terms of simplicity and quality. The proposed FE modeling employs beam and spring elements to construct vehicle body models, which is targeted to produce an instant analysis result with a robust conceptual design at the incipient phase of development.
Technical Paper

Control of Steer by Wire System for Reference Steering Wheel Torque Tracking and Return-Ability

2018-04-03
2018-01-0566
This paper proposes a torque tracking algorithm via steer by wire to achieve the target steering feel and proposed a modified friction model to obtain return-ability. A three dimensional reference steering wheel torque map is designed using the measurement data of the steering characteristics of the target vehicle at a transition test and a weave test. In order to track the reference steering wheel torque, a sliding mode control is used in the tracking algorithm. In addition, to achieve return-ability, the modified friction model for steer by wire is used instead of the friction model defined in the reference steering wheel torque map. The modified friction model is composed of various models according to the angular velocity. The angular velocity and the angular acceleration used in the control algorithm are estimated using a kalman filter.
Technical Paper

Vibration Analysis of the Steering Wheel of a Passenger Car Due to the Tire Nonuniformity

1993-11-01
931918
The vehicle vibrations result from the exciting forces which are caused by air force, engine firing, tire mass unbalance, and tire uniformity. Especially, the shake and shimmy phenomena in the steering system are closely related to the vehicle vibration, the tire unbalance, and the tire uniformity. This paper presents the shimmy phenomenon due to the tire mass unbalance and the tire uniformity in order to investigate their effects.
Technical Paper

Performance and Exhaust Emissions of Hyundai Flexible Fuel Vehicle (FFV)

1993-11-01
931986
Recently, flexible fuel vehicle (FFV) has been drawn great attention because of its response for immediate use as alternative fueled one. Hyundai FFV can be operated on arbitrary fuel mixtures between gasoline and M85 with the specially programmed electronic control unit (ECU) which can determine optimized fueling quantity and ignition timing as the methanol content by the signal from electrostatic type fuel sensor. In this paper, the results of various tests including engine performance, cold startability, durability and exhaust emission reduction have been described. Full load, cold mode durability tests and field trials have been carried out with some material changes and surface treatments in the lubricating parts and fuel system. But, more work on its durability improvement is still required.
Technical Paper

The Wettability of Silicon Carbide by Liquid Pure Aluminum and Aluminum Alloys

1994-03-01
940808
There have been strong moves in recent years to introduce the metal matrix composites concept into higher volume applications, notably the automotive field where large volume production and lower material costs are required. The wettability between reinforcing materials and base material is one of important factors for the strength of composites and its manufacture. The main objective of this paper is to establish a basic understanding of wetting phenomena in SiC/liquid aluminum and aluminum alloy systems. In the present paper, results from the sessile drop method are reported for the effects on the wetting angle, θ, of free silicon in the silicon carbide substrate and of alloying additions of silicon, copper or magnesium to the aluminum drop for the temperature range 700-900 or 1400°C in the titanium-gettered vacuum (1.3 x 10-2 / 1.3 x 10-3 Pa).
Technical Paper

Characterization of High Temperature Properties in Al Matrix Composite Fabricated by the Low Pressure Squeeze Infiltration Process

1994-03-01
940809
Al matrix composites containing alumina (Al2O3) fibers are fabricated by the low pressure (25MPa) squeeze infiltration process which is suitable for the low cost mass production. Mechanical properties at room temperature as well as elevated temperatures (250°C, 350°C) are improved due to the presence of reinforcements. Upto 350°C, composites maintain a reasonable strength, which is much better than strength of the conventional Al alloy. Composites have equivalent wear rates to those of Ni - resist cast iron. Wear behavior is changed with the sliding speed. At low sliding speed, wear proceeds by the excessive failure of matrix and fiber, whilst, at higher sliding speed, matrix fracture near fiber plays a major role in wear. Wear resistance of 125°C is inferior to that of room temperature due to the reduction of mechanical properties followed by matrix softening and poor bonding.
Technical Paper

A Technique to Identify the Structure Borne Sound Sources Induced by Powertrain Vibration Behavior

1995-05-01
951235
Identification of structure borne sound sources induced by the structural vibration of an automotive powertrain has been studied. Based on the principal component analysis which uses singular value decomposition of a matrix consisting of the auto- and cross-spectra, the operating vibrational analysis is performed. The quantitative description of the output power due to intrinsic incoherent source is addressed. The applicability of the technique is tested both numerically and experimentally. First, the coherence analysis is numerically carried out with a simple structure which is modeled as multi-input and single output to identify the structure borne noise generation process. Second, the actual vibrational behavior of a powertrain structure and the interior noise analysis of a car under the running condition are carried out. The technique is shown to be very effective in the identification of the structure borne noise sources.
Technical Paper

Fatigue Failure and Reinforcing Method of Spot Welded Area at the Stage of Vehicle Development

1996-02-01
960553
Vehicle body structures are formed by thousands of spot welds, and fatigue failure of vehicle structures occur near the spot welds after driving a long way at a durability test road. It is necessary to know accurately the reason of the fatigue failure of the spot weld in the developing stage in order to reinforce it. Many investigations have been done regarding the strength of spot welded joints, contributing to understand its fatigue strength. In the developing process, a fatigue failed spot welded area can be repaired by CO2 welding or another method to continue the test. To know the effect of reinforcing these welds, several methods of welding were analyzed and compared to spot welding. With the results of this test, the appropriate repair method can be used instead of spot welding during the development of a new car and the best design guide can be given for the strength.
Technical Paper

Recycling of Automotive Tail Lamp Assembly

1997-02-24
970417
A new recycled material has been developed by using the scrap of tail lamp assembly, made of poly(methyl methacrylate) (PMMA) for the lens and acrylonitrile-butadiene-styrene terpolymer (ABS) for the housing. Lamp scrap was extruded in a twin-screw extruder, and mechanical properties of the scrap were compared with ABS, PMMA, and an ABS/PMMA (60/40) blend. The recycled material from 100% tail lamp scrap has similar modulus to the 60/40 blend, however, notched Izod impact strength and thermal resistance were lower than that of the blend, probably due to the presence of hot melt adhesive and silver paint. Scrap/virgin polymer mixtures showed improved thermal resistance and impact strength. The effects of composition and type of mixed polymer on mechanical properties were also investigated.
Technical Paper

Effect of Normalized Microstructure in Alloy Steel on the Performance of Planetary Gear Set of Automatic Transmission

1997-02-24
970972
The banded microstructure of pearlite and ferrite in normalized alloy steel is susceptible to thermal distortion during carburizing process due to its unidirectional orientation parallel to rolling direction. The planetary gears with material of banded microstructure have been experienced in high thermal distortion during carburizing and quenching process and result in uneven surface hardness and effective case depth at the inside of pinion gear after honing. These defects played failure initiation site roles in durability test during development of new automatic transmission. The galling between the contacting components in severe lubricating system was the main failure mechanism. Double normalizing at 920 °C was designed to resolve the banded microstructure of normalized alloy steel. The microstructure and grain size of the double heated steel became equiaxed and fine due to homogenizing and recrystallization through double heat treatment.
Technical Paper

Selecting the Spot Welding Condition of Multi-Layer Vehicle Structure

1997-02-24
970083
An automobile's structure is generally connected by spot welding the sheets together. Sometimes more than three layers of sheets can be used in a certain location for spot welding due to the limits of design conditions. Static strength and the fatigue life characteristics can be changed according to the welding conditions, which depend on the material, the thickness, and the number of sheets. Setting the appropriate conditions of multi-layer spot welding can be determined by analyzing static strength and fatigue life. For converting multi-layer spot welding to that of twofold layer with equal strength, the converting method can be suggested from static and fatigue test results. The increasing rate of static strength is larger than that of fatigue life, so it is reasonable to use fatigue life for limit condition.
X