Refine Your Search

Topic

Search Results

Viewing 1 to 10 of 10
Technical Paper

Vehicle Application of Auxiliary Cold Start System with the Fuel Distributor and the Extra Electronic Fuel Injector

2010-10-06
2010-36-0190
Along the last thirty years one of the challenges is to develop an engine working with ethanol with the same performance and characteristics of gasoline engines functioning at low temperatures. In Brazil the production expansion of flex fuel engines is the main motivation for technology development and research to improve the engine cold start and functioning, when using ethanol. The use of gasoline as an auxiliary in the cold start system is now the main characteristic of this system. In this work the performance of a new cold start system is analyzed. Tests were performed in a vehicle and the results show the potential of the new technology.
Technical Paper

Development of a Bench Durability Test to the Exhaust Attachment System

2010-10-06
2010-36-0005
For many years durability tests engineers have worked in the sense of improving the tests that, at first, were performed using public roads with high time consumption and low reproducibility. Proving grounds were specially designed to reproduce the most important efforts to the body and chassis systems, but time problem was still there. Time and cost reduction allied to the needs of quality, reliability and reproducibility improvement led the engineers to develop methods and equipments to reproduce the durability tests in the lab. In this way the road simulators appear as a powerful tool able to perform durability tests with high reliability, self-controlled and with very low time compared to the road tests. At this scenery bench tests were also created to components and systems mainly used to anticipate problems before a whole vehicle test.
Technical Paper

Longitudinal Performance of a BAJA SAE Vehicle

2010-10-06
2010-36-0315
Driven by the necessity to reduce costs and improve products quality the automotive industry replaced the design method known as "trial and error" by those grounded on mathematical and physical theory. In this context, a longitudinal performance test was made by BAJA SAE UFMG team, in order to acquire vehicular performance data that will be used to validate computer models. The methodology consists of sensors and data acquisition system research, validation, fixation and installation in the vehicle, test and process of acquired data. From these steps, correlated data were acquired from magnitudes such as angular velocity in transmission shafts, global longitudinal acceleration and velocity, travel of break and throttle pedals and pressure inside of master cylinder. These results developed the knowledge about vehicular dynamic allowing the improvement of futures prototypes.
Technical Paper

Performance and Emission Analysis of the Otto Cycle Engine Converted to Bi-Fuel Gasoline and Natural Gas (VNG)

2002-11-19
2002-01-3543
This work presents a full analysis of a bi-fuel engine converted to natural gas and aims to survey the main performance losses and the advantages in specific consumption and toxic emissions. With this purpose, dynamometric tests and curves survey of a Fiat Palio 1.6, 16V engine, according to Standard NBR ISO 1585. Tests were made using diverse mixers, trying to obtain the losses caused by this device when the engine is working with gasoline, after the conversion. Tests were performed for different ignition advances, with manual and electronic VNG flow control systems. Trials for many differents low gear engine regulation, looking for consumption reduction and lower emission rates. The gas pressure reducer was tested with and without heating, showing differents results, mainly for emission rates. Other than comparing different components and different engine operation conditions, an analysis of two different natural gas conversion kits were performed, both extensile used in Brazil.
Technical Paper

Stratified Torch Ignition Engine: Performance Analysis

2016-10-25
2016-36-0379
Global climate change and an increasing energy demand are driving the scientific community to further advance internal combustion engine technology. Invented by Sr. Henry Ricardo in 1918 the torch ignition system was able to significantly decrease engine’s fuel consumption and emission levels. Since the late 70s, soon after the Compound Vortex Controlled Combustion (CVCC) created by Honda, the torch ignition system R&D almost ceased due to the issues encountered by very complex and costly mechanic control systems that time. This work presents a stratified torch ignition prototype endowed with a sophisticated electronic control systems and components such as electro-injectors from direct injection systems placed on the pre-combustion chamber. The torch ignition prototype was tested and its performance are presented and compared with the baseline engine, which was used as a workhorse for the prototype engine construction.
Technical Paper

Proposal for Improving the Performance of Longitudinal Acceleration of a Land Vehicle

2017-11-07
2017-36-0381
The present study introduces a proposal to improve the longitudinal performance of a land vehicle through the adoption of an unusual traction control system. The system is capable of improving the transfer of engine power to the ground and reduces the complexity of the task being performed by the driver. High-performance vehicles are able to achieve high levels of longitudinal acceleration and, sometimes, the power excess leads to the spinoff of the drive wheels, which decrease the ability of the tires to generate force, and consequently the vehicle acceleration. The proposed system acts in addition with the motor control, through the derivation of the motor speed signal, and its control by comparison with a predefined value. The control can delay or even suppress the ignition of the engine. Thus, the rate at which the engine gains speed, and consequently, the rate at which the vehicle accelerates, is limited.
Technical Paper

Study of Unmanned Supersonic Aircraft Configuration

2013-10-07
2013-36-0353
The aim of this work is to present the preliminary configuration design studies for an unmanned, lightweight (less than 15 kg), supersonic research aircraft. The studies comprise the aircraft typical mission, the aerodynamic and structural arrangement, preliminary performance, as well as mass distribution. The aircraft, an Unmanned Air Vehicle, or “UAV”, is named as Pohox (“arrow” in Maxakali indian language). It is intended to be the flying test bed for a multicycle engine capable to provide thrust in subsonic, transonic and supersonic regimes. In order to provide validation of the analysis tools, flight performance characteristics of a known, high speed aircraft - North American X-15 - have been also evaluated and compared with the available flight test data. The present analysis is an important step towards the aircraft detailed definition. And the features associated with the configuration obtained are good indications of the technical feasibility of this supersonic UAV.
Technical Paper

Estimation of Vehicle Tire-Road Contact Forces: A Comparison between Artificial Neural Network and Observed Theory Approaches

2018-04-03
2018-01-0562
One of the principal goals of modern vehicle control systems is to ensure passenger safety during dangerous maneuvers. Their effectiveness relies on providing appropriate parameter inputs. Tire-road contact forces are among the most important because they provide helpful information that could be used to mitigate vehicle instabilities. Unfortunately, measuring these forces requires expensive instrumentation and is not suitable for commercial vehicles. Thus, accurately estimating them is a crucial task. In this work, two estimation approaches are compared, an observer method and a neural network learning technique. Both predict the lateral and longitudinal tire-road contact forces. The observer approach takes into account system nonlinearities and estimates the stochastic states by using an extended Kalman filter technique to perform data fusion based on the popular bicycle model.
Technical Paper

Comparison between Durability Tests Performed in Field and in Lab for Powertrain Suspension System

2014-09-30
2014-36-0174
Currently the durability test of FIAT vehicles powertrain suspension system is performed in pattern roads that reproduces conditions which the vehicle is submitted by costumer during product life cycle. The test done in these roads is time consuming and expensive. Experimental Engineers, for quite some time, have endeavored in doing automotive components fatigue tests in the lab. These environments provide more controlled test conditions and enable a less time consuming test. This work analyzes, over one of the three powertrain system attachment points of a passenger vehicle, differences that are found between a test performed in pattern roads and a test performed in a 6DOF road simulator. As conclusion, presents alternatives to perform the test of these components in lab using a 6DOF road simulator.
Technical Paper

Study of Unmanned Supersonic Aircraft Configuration

2014-09-30
2014-36-0193
The aim of this work is to present the preliminary performance studies of the unmanned, lightweight (less than 10 kg), supersonic research aircraft. The studies comprise the typical mission for the aircraft's first supersonic version, based on the aerodynamic, thrust, and mass characteristics presented in a previous work. The aircraft, named as “Pohox”, is an Unmanned Air Vehicle, or “UAV”, and is intended to be the flying test bed for a multi cycle engine capable to provide thrust in subsonic, transonic and supersonic regimes. Different tools have been developed to perform the analysis. In the analysis, different flight paths are considered in order to provide insights in terms of fuel consumption, altitude and speed gain. Aircraft ‘excess power’ diagrams have been generated, to provide guidance for the definition of the flight paths to be analyzed. Drag dependency with Mach number is considered in the analysis.
X