Refine Your Search

Topic

Author

Search Results

Journal Article

Impact of Intelligent Transportation Systems on Vehicle Fuel Consumption and Emission Modeling: An Overview

2014-01-15
2013-01-9094
Climate change due to greenhouse gas emissions has led to new vehicle emissions standards which in turn have led to a call for vehicle technologies to meet these standards. Modeling of vehicle fuel consumption and emissions emerged as an effective tool to help in developing and assessing such technologies, to help in predicting aggregate vehicle fuel consumption and emissions, and to complement traffic simulation models. The paper identifies the current state of the art on vehicle fuel consumption and emissions modeling and its utilization to test the environmental impact of the Intelligent Transportation Systems (ITS)’ measures and to evaluate transportation network improvements. The study presents the relevant models to ITS in the key classifications of models in this research area. It demonstrates that the trends of vehicle fuel consumption and emissions provided by current models generally do satisfactorily replicate field data trends.
Journal Article

Robust Semi-Active Ride Control under Stochastic Excitation

2014-04-01
2014-01-0145
Ride control of military vehicles is challenging due to varied terrain and mission requirements such as operating weight. Achieving top speeds on rough terrain is typically considered a key performance parameter, which is always constrained by ride discomfort. Many military vehicles using passive suspensions suffer with compromised performance due to single tuning solution. To further stretch the performance domain to achieving higher speeds on rough roads, semi-active suspensions may offer a wide range of damping possibilities under varying conditions. In this paper, various semi-active control strategies are examined, and improvements have been made, particularly, to the acceleration-driven damper (ADD) strategy to make the approach more robust for varying operating conditions. A seven degrees of freedom ride model and a quarter-car model were developed that were excited by a random road process input modeled using an auto-regressive time series model.
Journal Article

Finite Element Modeling of Tire Transient Characteristics in Dynamic Maneuvers

2014-04-01
2014-01-0858
Studying the kinetic and kinematics of the rim-tire combination is very important in full vehicle simulations, as well as for the tire design process. Tire maneuvers are either quasi-static, such as steady-state rolling, or dynamic, such as traction and braking. The rolling of the tire over obstacles and potholes and, more generally, over uneven roads are other examples of tire dynamic maneuvers. In the latter case, tire dynamic models are used for durability assessment of the vehicle chassis, and should be studied using high fidelity simulation models. In this study, a three-dimensional finite element model (FEM) has been developed using the commercial software package ABAQUS. The purpose of this study is to investigate the tire dynamic behavior in multiple case studies in which the transient characteristics are highly involved.
Journal Article

A New Semi-Empirical Method for Estimating Tire Combined Slip Forces and Moments during Handling Maneuvers

2015-07-01
2015-01-9112
Modeling the tire forces and moments (F&M) generation, during combined slip maneuvers, which involves cornering and braking/driving at the same time, is essential for the predictive vehicle performance analysis. In this study, a new semi-empirical method is introduced to estimate the tire combined slip F&M characteristics based on flat belt testing machine measurement data. This model is intended to be used in the virtual tire design optimization process. Therefore, it should include high accuracy, ease of parameterization, and fast computational time. Regression is used to convert measured F&M into pure slip multi-dimensional interpolant functions modified by weighting functions. Accurate combined slip F&M predictions are created by modifying pure slip F&M with empirically determined shape functions. Transient effects are reproduced using standard relaxation length equations. The model calculates F&M at the center of the contact patch.
Journal Article

A Direct Yaw Control Algorithm for On- and Off-Road Yaw Stability

2011-04-12
2011-01-0183
Models for off-road vehicles, such as farm equipment and military vehicles, require an off-road tire model in order to properly understand their dynamic behavior on off-road driving surfaces. Extensive literature can be found for on-road tire modeling, but not much can be found for off-road tire modeling. This paper presents an off-road tire model that was developed for use in vehicle handling studies. An on-road, dry asphalt tire model was first developed by performing rolling road force and moment testing. Off-road testing was then performed on dirt and gravel driving surfaces to develop scaling factors that explain how the lateral force behavior of the tire will scale from an on-road to an off-road situation. The tire models were used in vehicle simulation software to simulate vehicle behavior on various driving surfaces. The simulated vehicle response was compared to actual maximum speed before sliding vs. turning radius data for the studied vehicle to assess the tire model.
Journal Article

Control Strategy for the Excitation of a Complete Vehicle Test Rig with Terrain Constraints

2013-04-08
2013-01-0671
A unique concept for a multi-body test rig enabling the simulation of longitudinal, steering and vertical dynamics was developed at the Institute for Mechatronic Systems (IMS) at TU Darmstadt. A prototype of this IMS test rig is currently being built. In conjunction with the IMS test rig, the Vehicle Terrain Performance Laboratory (VTPL) at Virginia Tech further developed a full car, seven degree of freedom (7 DOF) simulation model capable of accurately reproducing measured displacement, pitch, and roll of the vehicle body due to terrain excitation. The results of the 7 DOF car model were used as the reference input to the multi-body IMS test rig model. The goal of the IMS/VTPL joint effort was to determine whether or not a controller for the IMS test rig vertical actuator could accurately reproduce wheel displacements due to different measured terrain constraints.
Journal Article

Using Performance Margin and Dynamic Simulation for Location Aware Adaptation of Vehicle Dynamics

2013-04-08
2013-01-0703
One seminal question that faces a vehicle's driver (either human or computer) is predicting the capability of the vehicle as it encounters upcoming terrain. A Performance Margin (PM) is defined in this work as the ratio of the required tractive effort to the available tractive effort for the front and rear respectively. This simple definition stems from and incorporates many traditional handling metrics and is robust in its scope of applicability. The PM is implemented in an Intervention Strategy demonstrating its use to avoid situations in which the vehicle exceeds its handling capabilities. Results from a design case study are presented to show the potential efficacy of developing a PM-based control system.
Technical Paper

Exhaust Emission Analysis of a Spark Ignition Engine Operating with Hydrogen Injection in a Pre-Combustion Chamber

2020-01-13
2019-36-0121
Due to the large negative impact of combustion gas emissions on air quality and the more stringent environmental legislation, research on internal combustion engines (ICE) are being developed to reduce emissions of pollutant gases to the atmosphere. One of the research fronts is the use of lean mixtures with the pre-chamber ignition system (PCIS). This system consists of a pre-chamber (PC) connected to the main chamber by one or more interconnecting holes. A spark plug initiates combustion of the mixture present in the pre-chamber, which is propagated as gas jet into the main chamber, igniting the lean mixture present therein. The gas jets have high thermal and kinetic energy, which promote faster combustion duration, making the system less prone to knock and with lower cyclic variability of the IMEP, enabling the lean limit extension. The pre-chamber system can be assisted with a supplementary liquid or gaseous fuel injection, enabling the charge stratification.
Technical Paper

Effects of operation temperature on exhaust emissions in a spark ignition system using pre-chamber stratified system

2020-01-13
2019-36-0130
Atmospheric pollution is the major public health issue in many cities around the world. Internal combustion engines (ICE) and industries are common sources of pollutants that aggravate this situation. Aiming to overcome this problem, increasingly restrictive legislation on combustion pollutant emissions has been formulated and new technologies are being developed to ensure compliance with such restrictions. In this scenario, the lean mixtures appear as a possible alternative, but also bring some inconveniences such as combustion instabilities. Pre-chamber ignition systems (PCIS) enable a more stable combustion process due to high kinetic, thermal and chemical energy of the gases from the pre-chamber (PC), which pass through nozzles and begin the combustion process of the air-fuel mixture contained in the main combustion chamber (MC). However, some challenges still have to be overcome in the development of these systems, one of the main ones being hydrocarbon (HC) emissions.
Technical Paper

Yaw Stability Control and Emergency Roll Control for Vehicle Rollover Mitigation

2010-10-05
2010-01-1901
In this paper a yaw stability control algorithm along with an emergency roll control strategy have been developed. The yaw stability controller and emergency roll controller were both developed using linear two degree-of-freedom vehicle models. The yaw stability controller is based on Lyapunov stability criteria and uses vehicle lateral acceleration and yaw rate measurements to calculate the corrective yaw moment required to stabilize the vehicle yaw motion. The corrective yaw moment is then applied by means of a differential braking strategy in which one wheel is selected to be braked with appropriate brake torque applied. The emergency roll control strategy is based on a rollover coefficient related to vehicle static stability factor. The emergency roll control strategy utilizes vehicle lateral acceleration measurements to calculate the roll coefficient. If the roll coefficient exceeds some predetermined threshold value the emergency roll control strategy will deploy.
Technical Paper

Development of a Bench Durability Test to the Exhaust Attachment System

2010-10-06
2010-36-0005
For many years durability tests engineers have worked in the sense of improving the tests that, at first, were performed using public roads with high time consumption and low reproducibility. Proving grounds were specially designed to reproduce the most important efforts to the body and chassis systems, but time problem was still there. Time and cost reduction allied to the needs of quality, reliability and reproducibility improvement led the engineers to develop methods and equipments to reproduce the durability tests in the lab. In this way the road simulators appear as a powerful tool able to perform durability tests with high reliability, self-controlled and with very low time compared to the road tests. At this scenery bench tests were also created to components and systems mainly used to anticipate problems before a whole vehicle test.
Technical Paper

Longitudinal Performance of a BAJA SAE Vehicle

2010-10-06
2010-36-0315
Driven by the necessity to reduce costs and improve products quality the automotive industry replaced the design method known as "trial and error" by those grounded on mathematical and physical theory. In this context, a longitudinal performance test was made by BAJA SAE UFMG team, in order to acquire vehicular performance data that will be used to validate computer models. The methodology consists of sensors and data acquisition system research, validation, fixation and installation in the vehicle, test and process of acquired data. From these steps, correlated data were acquired from magnitudes such as angular velocity in transmission shafts, global longitudinal acceleration and velocity, travel of break and throttle pedals and pressure inside of master cylinder. These results developed the knowledge about vehicular dynamic allowing the improvement of futures prototypes.
Technical Paper

Performance and Emission Analysis of the Turbocharged Spark-Ignition Engine Converted to Natural Gas

2003-11-18
2003-01-3726
In this work is proposed the installation of a turbocharger in a low dislocated volume engine, aiming to achieve a higher effective mean pressure and air fuel mixture density, for a better performance of the converted engine. This analysis is made through experimental tests in a break bench, following the Brazilian standard NBR ISO 1585. The results presented shows the basic behavior of the torque curves, power and gas emission, which reflects the changes in performance with both fuels for a aspirated and turbocharged engine, for all the engine rotation speeds. These results show the technical and economical viability of the conversion to Vehicular Natural Gas of a low cc engine, when adapted a commercial turbocharger kit.
Technical Paper

Performance and Emission Analysis of the Otto Cycle Engine Converted to Bi-Fuel Gasoline and Natural Gas (VNG)

2002-11-19
2002-01-3543
This work presents a full analysis of a bi-fuel engine converted to natural gas and aims to survey the main performance losses and the advantages in specific consumption and toxic emissions. With this purpose, dynamometric tests and curves survey of a Fiat Palio 1.6, 16V engine, according to Standard NBR ISO 1585. Tests were made using diverse mixers, trying to obtain the losses caused by this device when the engine is working with gasoline, after the conversion. Tests were performed for different ignition advances, with manual and electronic VNG flow control systems. Trials for many differents low gear engine regulation, looking for consumption reduction and lower emission rates. The gas pressure reducer was tested with and without heating, showing differents results, mainly for emission rates. Other than comparing different components and different engine operation conditions, an analysis of two different natural gas conversion kits were performed, both extensile used in Brazil.
Technical Paper

Optimization of a Cam by a Genetic Algorithm

2002-11-19
2002-01-3565
Using a Simple Genetic Algorithm, the present paper obtains the optimal geometry of a cam with roll follower. In order to evaluate cam performance, an objective function which takes into account the influence of the inertia, the perimeter and of the pressure angle is proposed. The choice for a Genetic Algorithm is justified because, in preliminary tests, the objective function had proven to be multimodal
Technical Paper

Developing a Methodology to Synthesize Terrain Profiles and Evaluate their Statistical Properties

2011-04-12
2011-01-0182
The accuracy of computer-based ground vehicle durability and ride quality simulations depends on accurate representation of road surface topology as vehicle excitation data since most of the excitation exerted on a vehicle as it traverses terrain is provided by the terrain topology. It is currently not efficient to obtain accurate terrain profile data of sufficient length to simulate the vehicle being driven over long distances. Hence, durability and ride quality evaluations of a vehicle depend mostly on data collected from physical tests. Such tests are both time consuming and expensive, and can only be performed near the end of a vehicle's design cycle. This paper covers the development of a methodology to synthesize terrain profile data based on the statistical analysis of physically measured terrain profile data.
Technical Paper

A Comparative Analysis of Direct Injection into a Pressurized Chamber Using an Automatic Image Treatment Methodology

2016-10-25
2016-36-0163
A multi-hole direct injection injector was studied by means of image analysis. Methodologies based on an automatic process of cone angle measurement and edge detection were applied for the spray images generated by a 100 bar injection pressure discharged into a pressurized rigid chamber. A criterion based on pixel values was taken to localize the spray edges as angular coordinates and also with x and y position data. The high pixel values were associated with liquid phase while the low pixel values were associated to its absence. Computational codes written in MATLAB environment were used to analyze the numerical matrices associated to the images. Using the written MATLAB codes, a comparison of the effect of atmospheric back pressure, inside the chamber, on the spray pattern, cone angle and spray penetration were evaluated. The chamber was pressurized with 2.5, 5.0, 7.5 and 10 bar of back pressure. The tested fluid injected was EXXSOL D60 for simulating ethanol fuel behavior.
Technical Paper

Stratified Torch Ignition Engine: NOx Emissions

2016-10-25
2016-36-0387
The emission of nitric oxide (NOx) is the most difficult to limit among numerous harmful exhaust gas components. The NOX emission of internal combustion engines is mainly NO, but it will be oxidized into NO2 quickly after entering the air. NO is formed inside the combustion chamber in post-flame combustion by the oxidation of nitrogen from the air in conditions that are dependent on the chemical composition of the mixture, temperature and pressure. The correlation between NO emissions and temperature in the combustion chamber is a result of the endothermic nature of these reactions and can be described by extended Zeldovich Mechanism. The stratified torch ignition engine is able to run with lean mixture and low cyclic variability. Due to lean operation, the in-cylinder temperature of the STI engine is significantly lower than the conventional spark ignited one. This fact lead to a substantial reduction in NOx specific emission.
Technical Paper

Advanced Castings Made Possible Through Additive Manufacturing

2017-03-28
2017-01-1663
Binder jetting of sand molds and cores for metal casting provides a scalable and efficient means of producing metal components with complex geometric features made possible only by Additive Manufacturing. Topology optimization software that can mathematically determine the optimum placement of material for a given set of design requirements has been available for quite some time. However, the optimized designs are often not manufacturable using standard metal casting processes due to undercuts, backdraft and other issues. With the advent of binder-based 3D printing technology, sand molds and cores can be produced to make these optimized designs as metal castings.
Technical Paper

Influence of Inflation Pressure of a Tire on Rolling Resistance and Fuel Consumption

2017-11-07
2017-36-0095
Resistive forces are a great source of fuel consumption in vehicles. In particular, rolling resistance represent the major resistance force at low speeds. It is highly influenced by the inflation pressure of the tire and vertical load over it. In the present work, a computer model is created with the objective of investigating the influence of tire inflation pressure on fuel consumption and rolling resistance force. Pressure is varied and parameters analyzed at different vehicle speeds for two different calculation methods. Results show significant decrease in fuel consumption and rolling resistance force as inflation pressure is augmented.
X