Refine Your Search

Search Results

Viewing 1 to 10 of 10
Journal Article

Mechanical Behavior and Failure Mechanism of Nb-Clad Stainless Steel Sheets

2009-04-20
2009-01-1393
Because niobium-clad 304L stainless steel sheets are considered for use as bipolar plates in polymer electrolyte membrane (PEM) fuel cells, their mechanical behavior and failure mechanism are important to be examined. As-rolled and annealed specimens were tested in tension, bending and flattening. The effects of annealing temperature and time on the mechanical behavior and failure mechanism were investigated. Micrographic analyses of bent and flattened specimens showed that the as-rolled specimens have limited ductility and that the annealed specimens can develop an intermetallic layer of thickness of a few microns. The annealed specimens failed due to the breakage of intermetallic layer causing localized necking and the subsequent failure of Nb layer. The springback angles of the as-rolled and annealed specimens were also obtained from guided-bend tests.
Technical Paper

Bolt-Load Retention Behavior of Die-Cast AZ91D and AE42 Magnesium

1998-02-23
980090
The effect of temperature and preload on the bolt load retention (BLR) behavior of AZ91D and AE42 magnesium die castings was investigated. The results were compared to those of 380 aluminum die castings. Test temperatures from 125 to 175°C and preloads from 7 to 28 kN were investigated. The loss of preload for AZ91D was more sensitive to temperature than that observed for AE42, especially at low preloads. In general, retained bolt-load was lowest in AZ91D. All test assemblies were preloaded at room temperature and load levels increased when the assemblies reached test temperature. The load-increase was dependent on the preload level, test temperature, alloy, and results from thermal expansion mismatch between the steel bolt and the magnesium alloy components, mitigated by the onset of primary creep. Thermal exposure (aging) of AZ91D at 150°C improved BLR behavior.
Technical Paper

Permanent Mold Casting and Creep Behavior of Mg - 4 Al - 4 X: (Ca, Ce, La, Sr) Alloys

2007-04-16
2007-01-1027
Creep-resistant magnesium alloys for automotive powertrain applications offer significant potential for vehicle weight reduction. In this study permanent mold casting, microstructure and creep behavior have been investigated for a series of ternary magnesium alloys (Mg-4Al-4X (X: Ca, Ce, La, Sr) wt%) and AXJ530 (Mg-5Al-3Ca-0.15Sr, wt%). A permanent mold was instrumented with twelve thermocouples and mold temperature was monitored during the casting process. Average mold temperature increased from 200°C to 400°C during a typical alloy casting series (fifteen to twenty castings). The cast microstructure for all alloys consists of primary α-Mg globular phase surrounded by eutectic structure which is composed of intermetallic(s) and α-Mg magnesium phases. The primary cell size of the AXJ530 increased from 18 to 24 μm with increasing mold temperature and a similar trend is expected for all alloys.
Technical Paper

Bolt-Load Retention Behavior of a Die Cast Magnesium-Rare Earth Alloy

2001-03-05
2001-01-0425
The need for improved understanding of new magnesium alloys for the automotive industry continues to grow as the application for these lightweight alloys expands to more demanding environments, particularly in drivetrain components. Their use at elevated temperatures, such as in transmission cases, presents a challenge because magnesium alloys generally have lower creep resistance than aluminum alloys currently employed for such applications. In this study, a new die cast magnesium alloy, MEZ, containing rare earth (RE) elements and zinc as principal alloying constituents, was examined for its bolt-load retention (BLR) properties. Preloads varied from 14 to 28 kN and test temperatures ranged from 125 to 175°C. At all test temperatures and preloads, MEZ retained the greatest fraction of the initial imposed preload when compared to the magnesium alloys AZ91D, AE42, AM50, and the AM50+Ca series alloys.
Technical Paper

A Test Method for Quantifying Residual Stress Due to Heat Treatment in Metals

2006-04-03
2006-01-0319
Quantification of residual stresses is an important engineering problem impacting manufacturabilty and durability of metallic components. An area of particular concern is residual stresses that can develop during heat treatment of metallic components. Many heat treatments, especially in heat treatable cast aluminum alloys, involve a water-quenching step immediately after a solution-treatment cycle. This rapid water quench has the potential to induce high residual stresses in regions of the castings that experience large thermal gradients. These stresses may be partially relaxed during the aging portion of the heat treatment. The goal of this research was to develop a test sample and quench technique to quantify the stresses created by steep thermal gradients during rapid quenching of cast aluminum. The development and relaxation of residual stresses during the aging cycle was studied experimentally with the use of strain gauges.
Technical Paper

Bolt-Load Retention and Creep of Die-Cast Magnesium Alloys

1997-02-24
970325
New high-temperature Mg alloys are being considered to replace 380 Al in transmission cases, wherein bolt-load retention, and creep, is of prime concern. One of these alloys is die cast AE42, which has much better creep properties than does AZ91D but is still not as creep resistant as 380 Al. It is thus important to investigate bolt-load retention and creep of AE42 as an initial step in assessing its suitability as a material for transmission housings. To that end, the bolt-load retention behavior of die-cast AE42, AZ91D and 380 Al have been examined using standard M10 bolts specially instrumented with stable high-temperature strain gages. The bolt-load retention test pieces were die cast in geometries approximating the flange and boss regions in typical bolted joints. Bolt-load retention properties were examined as a function of time (at least 100 hours), temperature (150 and 175 °C) and initial bolt preload (14 to 34 kN).
Technical Paper

The Effect of Copper Level and Solidification Rate on the Aging Behavior of a 319-Type Cast Aluminum Alloy

2000-03-06
2000-01-0759
Compositional and microstructural variations in a casting can often result in rather significant variations in the response to a given aging treatment, leading to location dependent mechanical properties. The objective of this study is to determine the effect of copper content and solidification rate on the aging behavior of a type 319 cast aluminum alloy. The nominal composition of the alloy is Al-7% Si-3.5% Cu-0.25% Mg, however, typical secondary 319 aluminum specifications allow copper levels to vary from 3-4%. Solidification rates throughout a casting can vary greatly due to, among other factors, differences in section size. To determine the effect of copper level and solidification rate on the aging response, aging curves were experimentally developed for this alloy. Three different copper levels (3, 3.5, 4%) and two solidification rates were used for this study. Aging temperatures ranged from 150-290°C with nine aging times at each temperature.
Technical Paper

Failure Prediction of Sheet Metals Based on an Anisotropic Gurson Model

2000-03-06
2000-01-0766
A failure prediction methodology that can predict sheet metal failure under arbitrary deformation histories including rotating principal stretch directions and bending/unbending with consideration of damage evolution is reviewed in this paper. An anisotropic Gurson yield criterion is adopted to characterize the effects of microvoids on the load carrying capacity of sheet metals where Hill’s quadratic anisotropic yield criterion is used to describe the matrix normal anisotropy and planar isotropy. The evolution of the void damage is based on the growth, nucleation and coalescence of microvoids. Mroz’s anisotropic hardening rule, which was proposed based on the cyclic plastic behavior of metals observed in experiments, is generalized to characterize the anisotropic hardening behavior due to loading/unloading with consideration of the evolution of void volume fraction. The effects of yield surface curvature are also included in the plasticity model.
Technical Paper

Finite Element Modeling of Bolt Load Retention of Die-Cast Magnesium

2000-03-06
2000-01-1121
The use of die cast magnesium for automobile transmission cases offers promise for reducing weight and improving fuel economy. However, the inferior creep resistance of magnesium alloys at high temperature is of concern since transmission cases are typically assembled and joined by pre-loaded bolts. The stress relaxation of the material could thus adversely impact the sealing of the joint. One means of assessing the structural integrity of magnesium transmission cases is modeling the bolted joint, the topic of this paper. The commercial finite element code, ABAQUS, was used to simulate a well characterized bolt joint sample. The geometry was simulated with axi-symmetric elements with the exact geometry of a M10 screw. Frictional contact between the male and female parts is modeled by using interface elements. Material creep is described by a time hardening power law whose parameters are fit to experimental creep test data.
Technical Paper

Design of Experiments for Effects and Interactions during Brake Emissions Testing Using High-Fidelity Computational Fluid Dynamics

2019-09-15
2019-01-2139
The investigation and measurement of particle emissions from foundation brakes require the use of a special adaptation of inertia dynamometer test systems. To have proper measurements for particle mass and particle number, the sampling system needs to minimize transport losses and reduce residence times inside the brake enclosure. Existing models and spreadsheets estimate key transport losses (diffusion, turbophoretic, contractions, gravitational, bends, and sampling isokinetics). A significant limitation of such models is that they cannot assess the turbulent flow and associated particle dynamics inside the brake enclosure; which are anticipated to be important. This paper presents a Design of Experiments (DOE) approach using Computational Fluid Dynamics (CFD) to predict the flow within a dynamometer enclosure under relevant operating conditions. The systematic approach allows the quantification of turbulence intensity, mean velocity profiles, and residence times.
X