Refine Your Search

Topic

Search Results

Technical Paper

Biomechanical Investigation of Airbag-Induced Upper-Extremity Injuries

1997-11-12
973325
The factors that influence airbag-induced upper-extremity injuries sustained by drivers were investigated in this study. Seven unembalmed human cadavers were used in nineteen direct-forearm-interaction static deployments. A single horizontal-tear-seam airbag module and two different inflators were used. Spacing between the instrumented forearm and the airbag module was varied from 10 cm to direct contact in some tests. Forearm-bone instrumentation included triaxial accelerometry, crack detection gages, and film targets. Internal airbag pressure was also measured. The observed injuries were largely transverse, oblique, and wedge fractures of the ulna or radius, or both, similar to those reported in field investigations. Tears of the elbow joint capsule were also found, both with and without fracture of the forearm.
Technical Paper

Development of an Improved Driver Eye Position Model

1998-02-23
980012
SAE Recommended Practice J941 describes the eyellipse, a statistical representation of driver eye locations, that is used to facilitate design decisions regarding vehicle interiors, including the display locations, mirror placement, and headspace requirements. Eye-position data collected recently at University of Michigan Transportation Research Institute (UMTRI) suggest that the SAE J941 practice could be improved. SAE J941 currently uses the SgRP location, seat-track travel (L23), and design seatback angle (L40) as inputs to the eyellipse model. However, UMTRI data show that the characteristics of empirical eyellipses can be predicted more accurately using seat height, steering-wheel position, and seat-track rise. A series of UMTRI studies collected eye-location data from groups of 50 to 120 drivers with statures spanning over 97 percent of the U.S. population. Data were collected in thirty-three vehicles that represent a wide range of vehicle geometry.
Technical Paper

Standing Reach Envelopes Incorporating Anthropometric Variance and Postural Cost

2007-06-12
2007-01-2482
Standing reach envelopes are important tools for the design of industrial and vehicle environments. Previous work in this area has focussed on manikin-based (where a few manikins are used to simulate individuals reaching within the region of interest) and population-based (where data are gathered on many individuals reaching in a constrained environment) approaches. Each of these methods has merits and shortfalls. The current work bridges the manikin- and population-based approaches to assessing reach by creating population models using kinematic simulation techniques driven by anthropometric data. The approach takes into account body dimensions, balance, and postural cost to create continuous models that can be used to assess designs with respect to both maximal and submaximal reaches. Cost is quantified as the degree to which the torso is involved in the reach, since the inclination of the torso is a good measure of lower-back load and may be related to subjective reach difficulty.
Technical Paper

Modeling Vehicle Ingress and Egress Using the Human Motion Simulation Framework

2008-06-17
2008-01-1896
The ease of getting into and out of passenger cars and light trucks is a critical component of customer acceptance and product differentiation. In commercial vehicles, the health and safety of drivers is affected by the design of the steps and handholds they use to get into and out of the cab. Ingress/egress assessment appears to represent a substantial application opportunity for digital human models. The complexity of the design space and the range of possible biomechanical and subjective measures of interest mean that developing useful empirical models is difficult, requiring large-scale subject testing with physical mockups. Yet, ingress and egress motions are complex and strongly affected by the geometric constraints and driver attributes, posing substantial challenges in creating meaningful simulations using figure models.
Technical Paper

Development of Surrogate Child Restraints for Testing Occupant Sensing and Classification Systems

2004-03-08
2004-01-0843
This paper describes the design and development of a family of surrogate child restraints that are intended for use in developing and testing occupant sensing and classification systems. Detailed measurements were made of the geometry and mass distribution characteristics of 34 commercial child restraints, including infant restraints, convertibles, combination restraints, and boosters. The restraints were installed in three test seats with appropriately sized crash dummies to obtain data on seat-surface pressure patterns and the position and orientation of the restraint with belt loading. The data were used to construct two surrogates with removable components. The convertible surrogate can be used to represent a rear-facing infant restraint with or without a base, a rear-facing convertible, or a forward-facing convertible. The booster surrogate can represent a high-back belt-positioning booster, a backless booster, or a forward-facing-only restraint with a five-point harness.
Technical Paper

Modeling Population Distributions of Subjective Ratings

2001-06-26
2001-01-2122
Most human figure models used in ergonomic analyses present postural comfort ratings based on joint angles, and present a single comfort score for the whole body or on a joint-by-joint basis. The source data for these ratings is generally derived from laboratory studies that link posture to ratings. Lacking in many of these models is a thorough treatment of the distribution of ratings for the population of users. Information about ratings distributions is necessary to make cost-effective tradeoffs when design changes affect subjective responses. This paper presents experimental and analytic methods used to develop distribution models for incorporating subjective rating data in ergonomic assessments.
Technical Paper

Analysis of Truck-Light Vehicle Crash Data for Truck Aggressivity Reduction

2001-11-12
2001-01-2726
The National Highway Traffic Safety Administration and the University of Michigan Transportation Institute are investigating truck design countermeasures to provide safety benefits during collisions with light vehicles. The goal is to identify approaches that would best balance costs and benefits. This paper outlines the first phase of this study, an analysis of two-vehicle, truck/light vehicle crashes from 1996 through 1998 using several crash data bases to obtain a current description and determine the scope of the aggressivity problem. Truck fronts account for 60% of light vehicle fatalities in collisions with trucks. Collision with the front of a truck carries the highest probability of fatal (K) or incapacitating (A) injury. Truck sides account for about the same number of K and A-injuries combined as truck fronts, though injury probability is substantially lower than in crashes involving the front of a truck.
Technical Paper

Methods for In-Vehicle Measurement of Truck Driver Postures

2001-11-12
2001-01-2821
Effective application of human figure models to truck interior design requires accurate data on the postures and positions of truck drivers. Errors in positioning of figure models propagate to errors in reach, visibility, and other analyses. This paper describes methods used in a recent study to measure in-vehicle driving postures in Class 6, 7, and 8 trucks. A three-dimensional coordinate measurement machine was used to measure body landmark locations after a driver completed a short road course. The data were used to validate posture-prediction models developed in a previous laboratory study. Vehicle calibration, driver selection, and testing methods are reviewed.
Technical Paper

Car Crashes and Non-Head Impact Cervical Spine Injuries in Infants and Children

1992-02-01
920562
The effects of child safety seats have been well documented in the medical literature. Scattered throughout the medical literature are individual case reports of cervical injury to children restrained in child restraint systems. A review of the literature is provided identifying previous documented cases. The authors also provide new case details of children with cervical spine injury without head contact. An overview of the growth of the infant and specific details in the cervical spine that may contribute to significant cervical injury without head impact is presented.
Technical Paper

Non-Head Impact Cervical Spine Injuries in Frontal Car Crashes to Lap-Shoulder Belted Occupants

1992-02-01
920560
Crash injury reduction via lap-shoulder belt use has been well documented. As any interior car component, lap-shoulder belts may be related to injury in certain crashes. Relatively unknown is the fact that cervical fractures or fracture-dislocations to restrained front seat occupants where, in the crash, no head contact was evidenced by both medical records and car inspection. An extensive review of the available world's literature on car crash injuries revealed more than 100 such cases. A review of the NASS 80-88 was also conducted, revealing more examples. Cases from the author's own files are also detailed.
Technical Paper

Variability in Center of Gravity Height Measurement

1992-02-01
920050
A round-robin center of gravity height measurement study was conducted to assess current practice in the measurement of the vertical position of the center of gravity (c.g.) of light truck-type vehicles. The study was performed by UMTRI for the Motor Vehicle Manufacturers Association. The laboratories participating in the study were those of Chrysler Corporation, Ford Motor Company, General Motors Corporation, and the National Highway Traffic Safety Administration. The primary objectives of this study were (i) to determine to what extent the differing experimental procedures used by the participating laboratories at the time of the study result in significant differences in the measured vertical position of the center of mass of light truck-type vehicles, and (ii) to gain insight into the physical causes of such differences.
Technical Paper

Considering Driver Balance Capability in Truck Shifter Design

2006-07-04
2006-01-2360
A person's ability to perform a task is often limited by their ability to maintain balance. This is particularly true in lateral work performed in seated environments. For a truck driver operating the shift lever of a manual transmission, excessive shift forces can necessitate pulling on the steering wheel with the other hand to maintain balance, creating a potentially unsafe condition. An analysis of posture and balance in truck shifter operation was conducted using balance limits to define the acceptable range of shifter locations. The results are dependent on initial driver position, reach postures, and shoulder strength. The effects of shifter force direction and magnitude were explored to demonstrate the application of the analysis method. This methodology can readily be applied to other problems involving hand-force exertions in seated environments.
Technical Paper

Parking Crashes and Parking Assistance System Design: Evidence from Crash Databases, the Literature, and Insurance Agent Interviews

2006-04-03
2006-01-1685
This paper (1) summarizes previous human factors/safety research on parking (8 studies, mostly over 20 years old), (2) provides statistics for 10,400 parking-related crashes in Michigan from 2000-2002, and (3) summarizes interviews with 6 insurance agents concerning parking crashes. These sources indicate: 1 About 1/2 to 3/4 of parking crashes involve backing, often into another moving vehicle while emerging from a parking stall. 2 Eight-and-a-half foot-wide stalls had higher crash rates than wider stalls. 3 Most parallel parking crashes occur on major streets, not minor streets. 4 Lighting and driver impairment were minor factors in parking crashes.
Technical Paper

Simple Predictors of the Performance of A-trains

1993-11-01
932995
Figures of merit describing the performance qualities of multiple-trailer vehicle combinations (for example, rearward amplification) are usually determined from either full-scale vehicle testing or computer simulation analysis. Either method is expensive and time consuming, and restricted in practice to organizations with specialized equipment and engineering skills. One goal of a recent study, conducted by the University of Michigan Transportation Research Institute and sponsored by the Federal Highway Administration, was to use basic vehicle properties to develop simple formulations for estimating the performance qualities of multiple-trailer vehicle combinations. Several hundred computer simulation runs were made using UMTRI's Yaw/Roll program. Five common double-trailer vehicle configurations (defined by trailer lengths and axle configurations) were studied. Each of the five vehicles was subject to fifteen parameter variations.
Technical Paper

Characterizing the Road-Damaging Dynamics of Truck Tandem Suspensions

1993-11-01
932994
The road damage caused by heavy trucks is accentuated by the dynamic loads excited by roughness in the road. Simulation models of trucks are used to predict dynamic wheel loads, but special models are required for tandem suspensions. Parameter values to characterize tandem suspension systems can be measured quasi-statically on a suspension measurement facility, but it is not known how well they fit dynamic models. The dynamic behavior of leaf-spring and air-spring tandem suspensions were measured on a hydraulic road simulator using remote parameter characterization techniques. The road simulator tests were duplicated with computer simulations of these suspensions based on quasi-static parameter measurements to compare dynamic load performance. In the case of the walking-beam suspension, simulated performance on the road was compared to experimental test data to evaluate the ability of the walking-beam model to predict dynamic load.
Technical Paper

Repeatability of the Tilt-Table Test Method

1993-03-01
930832
Tilt-table testing is one means of quantifying the static roll stability of highway vehicles. By this technique, a test vehicle is subjected to a physical situation analogous to that experienced in a steady state turn. Although the analogy is not perfect, the simplicity and fidelity of the method make it an attractive means for estimating static rollover threshold. The NHTSA has suggested the tilt-table method as one means of regulating the roll stability properties of light trucks and utility vehicles. One consideration in evaluating the suitability of any test method for regulatory use is repeatability, both within and among testing facilities. As a first step toward evaluating the repeatability of the tilt-table method, an experimental study examining the sensitivity of tilt-table test results to variables associated with methodology and facility was conducted by UMTRI for the Motor Vehicle Manufacturers Association. This paper reports some of the findings of that study.
Technical Paper

Knee, Thigh and Hip Injury Patterns for Drivers and Right Front Passengers in Frontal Impacts

2003-03-03
2003-01-0164
Late model passenger cars and light trucks incorporate occupant protection systems with airbags and knee restraints. Knee restraints have been designed principally to meet the unbelted portions of FMVSS 208 that require femur load limits of 10-kN to be met in barrier crashes up to 30 mph, +/- 30 degrees utilizing the 50% male Anthropomorphic Test Device (ATD). In addition, knee restraints provide additional lower-torso restraint for belt-restrained occupants in higher-severity crashes. An analysis of frontal crashes in the University of Michigan Crash Injury Research and Engineering Network (UM CIREN) database was performed to determine the influence of vehicle, crash and occupant parameters on knee, thigh, and hip injuries. The data sample consists of drivers and right front passengers involved in frontal crashes who sustained significant injuries (Abbreviated Injury Scale [AIS] ≥ 3 or two or more AIS ≥ 2) to any body region.
Technical Paper

A Simulation Graphical User Interface for Vehicle Dynamics Models

1995-02-01
950169
This paper describes the architecture and use of a simulation graphical user interface (SGUI) that uses new (1990's) computer hardware and software concepts to provide an easy-to-use environment for simulating vehicle dynamics. The user interacts with windows, buttons, and pop-up menus, in a multitasking environment such as UNIX, Windows®, or Mac OS®. The SGUI reduces the level of computer expertise required of the user. Most information is shown in a graphic context, and “what if?” options are selected by clicking buttons and selecting from pop-up menus. The SGUI is organized as a data base of vehicles, vehicle parts, vehicle inputs, and simulation results. The organization makes it easy for users to assemble the component data needed to (1) simulate new systems, (2) run simulation programs automatically, and (3) view the results graphically. The SGUI is assembled from low-cost software components.
Technical Paper

Comparison of Occupant Restraints Based on Injury-Producing Contact Rates

1994-11-01
942219
The objective of this analysis is to evaluate the effectiveness of restraints in preventing injury-producing contacts of specific body regions, such as the head or chest, with specific interior components. In order to make comparisons by restraint use, an injury rate is calculated as the number of injury-producing contacts per hundred involved occupants. Data, including the Occupant Injury Classification (OIC), are from the 1988-92 National Accident Sampling System (NASS) Crashworthiness Data System (CDS). The analysis presented is limited to passenger vehicle drivers in towaway, frontal impacts. Injury-producing contact rates are compared for four restraint configurations: unrestrained, three-point belted, driver airbag alone, and driver airbag plus three-point belt. For each restraint configuration, contact rates are compared by three categories of injury severity, AIS 1, AIS 2, and AIS 3-6, body region injured, and contact area producing the injury.
Technical Paper

Some Effects of Lumbar Support Contour on Driver Seated Posture

1995-02-01
950141
An appropriately contoured lumbar support is widely regarded as an essential component of a comfortable auto seat. A frequently stated objective for a lumbar support is to maintain the sitter's lumbar spine in a slightly extended, or lordotic, posture. Although sitters have been observed to sit with substantial lordosis in some short-duration testing, long-term postural interaction with a lumbar support has not been documented quantitatively in the automotive environment. A laboratory study was conducted to investigate driver posture with three seatback contours. Subjects† from four anthropometric groups operated an interactive laboratory driving simulator for one-hour trials. Posture data were collected by means of a sonic digitizing system. The data identify driver-selected postures over time for three lumbar support contours. An increase of 25 mm in the lumbar support prominence from a flat contour did not substantially change lumbar spine posture.
X