Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Review of Prior Studies of Fuel Effects on Vehicle Emissions

2009-04-20
2009-01-1181
A literature review was conducted to survey recent research on the effects of fuel properties on exhaust emissions from gasoline and diesel vehicles, on-road and off-road. Most of the literature has been published in SAE papers, although data have also been reported in other journals and government reports. A full report and database are available from the Coordinating Research Council (www.crcao.org). The review identified areas of agreement and disagreement in the literature and evaluated the adequacy of experimental design and analysis of results. Areas where additional research would be helpful in defining fuel effects are also identified. In many of the research programs carried out to evaluate the effect of new blendstocks, the fuel components were splash blended in fully formulated fuels. This approach makes it extremely difficult to determine the exact cause of the emissions benefit or debit.
Journal Article

Modeling the Cold Start of the Ford 3.5L V6 EcoBoost Engine

2009-04-20
2009-01-1493
Optimization of the engine cold start is critical for gasoline direct injection (GDI) engines to meet increasingly stringent emission regulations, since the emissions during the first 20 seconds of the cold start constitute more than 80% of the hydrocarbon (HC) emissions for the entire EPA FTP75 drive cycle. However, Direct Injection Spark Ignition (DISI) engine cold start optimization is very challenging due to the rapidly changing engine speed, cold thermal environment and low cranking fuel pressure. One approach to reduce HC emissions for DISI engines is to adopt retarded spark so that engines generate high heat fluxes for faster catalyst light-off during the cold idle. This approach typically degrades the engine combustion stability and presents additional challenges to the engine cold start. This paper describes a CFD modeling based approach to address these challenges for the Ford 3.5L V6 EcoBoost engine cold start.
Journal Article

Optimal Use of E85 in a Turbocharged Direct Injection Engine

2009-04-20
2009-01-1490
Ford Motor Company is introducing “EcoBoost” gasoline turbocharged direct injection (GTDI) engine technology in the 2010 Lincoln MKS. A logical enhancement of EcoBoost technology is the use of E85 for knock mitigation. The subject of this paper is the optimal use of E85 by using two fuel systems in the same EcoBoost engine: port fuel injection (PFI) of gasoline and direct injection (DI) of E85. Gasoline PFI is used for starting and light-medium load operation, while E85 DI is used only as required during high load operation to avoid knock. Direct injection of E85 (a commercially available blend of ∼85% ethanol and ∼15% gasoline) is extremely effective in suppressing knock, due to ethanol's high inherent octane and its high heat of vaporization, which results in substantial cooling of the charge. As a result, the compression ratio (CR) can be increased and higher boost levels can be used.
Journal Article

Reconstruction of Time-Resolved Vehicle Emissions Measurements by Deconvolution

2009-04-20
2009-01-1513
A thorough understanding of vehicle exhaust aftertreatment system performance requires time-resolved emissions measurements that accurately follow driving transients, and that are correctly time-aligned with exhaust temperature and flow measurements. The transient response of conventional gas analyzers is characterized by both a time delay and an attenuation of high-frequency signal components. The distortion that this imposes on transient emissions measurements causes significant errors in instantaneous calculations of aftertreatment system efficiency, and thus in modal mass analysis. This creates difficulties in mathematical modeling of emissions system performance and in optimization of powertrain control strategies, leading to suboptimal aftertreatment system designs. A mathematical method is presented which improves the response time of emissions measurements. This begins with development of a model of gas transport and mixing within the sampling and measurement system.
Journal Article

Optimizing Precision and Accuracy of Quantitative PLIF of Acetone as a Tracer for Hydrogen Fuel

2009-04-20
2009-01-1534
Quantitative planar laser-induced fluorescence (PLIF) of gaseous acetone as a fuel-tracer has been used in an optically accessible engine, fueled by direct hydrogen injection. The purpose of this article is to assess the accuracy and precision of the measurement and the associated data reduction procedures. A detailed description of the acetone seeding system is given as well. The key features of the experiment are a high-pressure bubbler saturating the hydrogen fuel with acetone vapor, direct injection into an optical engine, excitation of acetone fluorescence with an Nd:YAG laser at 266 nm, and detection of the resulting fluorescence by an unintensified camera. Key steps in the quantification of the single-shot imaging data are an in-situ calibration and a correction for the effect of local temperature on the fluorescence measurement.
Journal Article

SCR Catalyst Systems Optimized for Lightoff and Steady-State Performance

2009-04-20
2009-01-0901
A laboratory study was performed to optimize a zoned configuration of an iron (Fe) SCR catalyst and a copper (Cu) SCR catalyst in order to provide high NOx conversion at lean A/F ratios over a broad range of temperature for diesel and lean-burn gasoline applications. With an optimized space velocity of 8,300 hr-1, a 67% (by volume) Fe section followed by a 33% Cu section provided at least 80% NOx conversion from approximately 230°C to 640°C when evaluated with 500 ppm NO and NH3. To improve the lean lightoff performance of the SCR catalyst system during a cold start, a Cu SCR catalyst that was 1/4 as long as the rear Cu SCR catalyst was placed in front of the Fe SCR catalyst. When evaluated with an excess of NH3 (NH3/NO ratio of 2.2), the Cu+Fe+Cu SCR system had significantly improved lightoff performance relative to the Fe+Cu SCR system, although the front Cu SCR catalyst did decrease the NOx conversion at temperatures above 475°C by oxidizing some of the NH3 to N2 or NO.
Journal Article

Treasuri2/FE: A Tool for the FE Simulation of Sound Package Parts Fully Integrated in Nastran

2009-05-19
2009-01-2216
Porous materials are extensively used in the construction of automotive sound package parts, due to their intrinsic capability of dissipating energy through different mechanisms. The issue related to the optimization of sound package parts (in terms of weight, cost, performances) has led to the need of models suitable for the analysis of porous materials' dynamical behavior and for this, along the years, several analytical and numerical models were proposed, all based on the system of equations initially developed by Biot. In particular, since about 10 years, FE implementations of Biot's system of equations have been available in commercial software programs but their application to sound package parts has been limited to a few isolated cases. This is due, partially at least, to the difficulty of smoothly integrating this type of analyses into the virtual NVH vehicle development.
Journal Article

Identification and Robust Control of LPG Fuel Supply System

2009-04-20
2009-01-1025
This paper proposes a new returnless LPG fuel supply system designed to increase the efficiency of current LPG engines. With a conventional engine fuel supply system, the fuel pump is driven at a certain speed to pressurize the fuel to an excessive level, and excess fuel that is discharged from the fuel pump but not injected from the injector is returned to the fuel tank via a pressure regulator and a return line. This arrangement keeps the pressure in the fuel supply line at a constant level. Accordingly, during engine idling, fuel cut-off or other times when very little or no fuel is injected from the injector, nearly all the fuel discharged from the fuel pump is returned to the fuel tank via the pressure regulator and return line. Therefore, the energy (electric power) applied to drive the fuel pump is wastefully consumed. Moreover, returning a large amount of excess fuel to the fuel tank can raise the fuel temperature in the tank, causing the fuel to evaporate.
Journal Article

Advanced Control System of Variable Compression Ratio (VCR) Engine with Dual Piston Mechanism

2009-04-20
2009-01-1063
A dual piston Variable Compression Ratio (VCR) engine has been newly developed. This compact VCR system uses the inertia force and hydraulic pressure accompanying the reciprocating motion of the piston to raise and lower the outer piston and switches the compression ratio in two stages. For the torque characteristic enhancement and the knocking prevention when the compression ratio is being switched, it is necessary to carry out engine controls based on accurate compression ratio judgment. In order to accurately judge compression ratio switching timing, a control system employing the Hidden Markov Model (HMM) was used to analyze vibration generated during the compression ratio switching. Also, in order to realize smooth torque characteristics, an ignition timing control system that separately controls each cylinder and simultaneously performs knocking control was constructed.
Journal Article

Applications of CFD Modeling in GDI Engine Piston Optimization

2009-06-15
2009-01-1936
This paper describes a CFD modeling based approach to address design challenges in GDI (gasoline direct injection) engine combustion system development. A Ford in-house developed CFD code MESIM (Multi-dimensional Engine Simulation) was applied to the study. Gasoline fuel is multi-component in nature and behaves very differently from the single component fuel representation under various operating conditions. A multi-component fuel model has been developed and is incorporated in MESIM code. To apply the model in engine simulations, a multi-component fuel recipe that represents the vaporization characteristics of gasoline is also developed using a numerical model that simulates the ASTM D86 fuel distillation experimental procedure. The effect of the multi-component model on the fuel air mixture preparations under different engine conditions is investigated. The modeling approach is applied to guide the GDI engine piston designs.
Journal Article

Herschel Heaters Control Modeling and Correlation

2009-07-12
2009-01-2348
Herschel and Planck satellites have recently undergone the thermal vacuum and thermal balance (TVTB) test which was performed in the ESA-ESTEC Large Space Simulator for Herschel and in Centre Spatial de Liège (CSL) for Planck. One of the specific targets of the Herschel test was the verification of the thermal stability of two HIFI units (required to be better than 3.10−4 °C/s) and of the Star Tracker mounting plate (required to be better than 2.5.10−3 °C/s), with particular attention on the performance of the relevant feedback control loops. Control system design and model predictions are presented and compared against the test results. Further discussion on the requirement verification is provided.
Journal Article

Analyses of Several Space Radiation-Mitigating Materials: Computational and Experimental Results

2009-07-12
2009-01-2338
Long-term exposure to the space radiation environment poses deleterious effects to both humans and space systems. The major sources of the radiation effects come from high energy galactic cosmic radiation and solar proton events. In this paper we investigate the radiation-mitigation properties of several shielding materials for possible use in spacecraft design, surface habitats, surface rovers, spacesuits, and temporary shelters. A discussion of the space radiation environment is presented in detail. Parametric radiation shielding analyses are presented using the NASA HZETRN 2005 code and are compared with ground-based experimental test results using the Loma Linda University Proton Therapy facility.
Journal Article

Using Designing for Human Variability to optimize Aircraft eat Layout

2009-06-09
2009-01-2310
Integrating the seemingly divergent objectives of aircraft seat configuration is a difficult task. Aircraft manufacturers look to design seats to maximize customer satisfaction and in-flight safety, but these objectives can conflict with the profit motive of airline companies. In order to boost revenue by increasing the number of passengers per aircraft, airline companies may increase seat height and decrease seat pitch. This results in disaccommodation of a greater percentage of the passenger population and is a reason for rising customer dissatisfaction. This paper describes an effort to bridge this gap by incorporating digital human models, layout optimization, and a profit-maximizing constraint into the aircraft seat design problem. A simplified aircraft seat design experiment is conceptualized and its results are extrapolated to an airline passenger population.
Journal Article

Effect of Illumination Angle on the Performance of Dusted Thermal Control Surfaces in a Simulated Lunar Environment

2009-07-12
2009-01-2420
JSC-1A lunar simulant has been applied to AZ93 and AgFEP thermal control surfaces on aluminum substrates in a simulated lunar environment. The temperature of these surfaces was monitored as they were heated with a solar simulator using varying angles of incidence and cooled in a 30 K coldbox. Thermal modeling was used to determine the solar absorptivity (a) and infrared emissivity (e) of the thermal control surfaces in both their clean and dusted states. It was found that even a sub-monolayer of dust can significantly raise the α of either type of surface. A full monolayer can increase the α/ε ratio by a factor of 3–4 over a clean surface. Little angular dependence of the α of pristine thermal control surfaces for both AZ93 and AgFEP was observed, at least until 30° from the surface. The dusted surfaces showed the most angular dependence of α when the incidence angle was in the range of 25° to 35°.
Journal Article

Results of Multifunctional Condensing Heat Exchanger for Water Recovery Applications

2009-07-12
2009-01-2383
Humidity control within confined spaces is of great importance for current NASA environmental control systems and future exploration applications. The engineered multifunction surfaces (MFS) developed by ORBITEC is a technology that produces hydrophilic and antimicrobial surface properties on a variety of substrate materials. These properties combined with capillary geometry create the basis for a passive condensing heat exchanger (CHX) for applications in reduced gravity environments, eliminating the need for mechanical separators and particulate-based coatings. The technology may also be used to produce hydrophilic and biocidal surface properties on a range of materials for a variety of applications where bacteria and biofilms proliferate, and surface wetting is beneficial.
Journal Article

Standardization of Graphics for Service Information and Translation Expense Reduction

2009-10-06
2009-01-2857
The cost of human natural language translation of Service Information, Assembly Instructions, Training Materials, Operator Manuals and other similar documents is a major expense for manufacturers. One translation avoidance method involves replacing most of a document’s text with still and/or animated graphics. While the graphics with minimum text concept has savings potential, clarity of communication must be maintained for widespread application of this technique. The necessary clarity should be achieved if standards are established for the symbols and graphical conventions used. This paper provides an example of a repair procedure documented using the graphics with minimum text paradigm, describes many of the anticipated standards and provides an update on the progress towards achieving a standard development project.
Journal Article

Real Time Implementation of DOC-DPF Models on a Production-Intent ECU for Controls and Diagnostics of a PM Emission Control System

2009-10-06
2009-01-2904
This paper describes the joint development by Tenneco and Pi Shurlok of a complete diesel engine aftertreatment system for controlling particulate matter emissions. The system consists of a DOC, DPF, sensors, controller and an exhaust fuel injection system to allow active DPF regeneration. The mechanical components were designed for flow uniformity, low backpressure and component durability. The overall package is intended as a complete PM control system solution for OEMs, which does not require any significant additions to the OEM's engine control strategies and minimizes integration complexity. Thus, to make it easier to adapt to different engine platforms, ranging from small off-road vehicle engines to large locomotive engines, model-based control algorithms were developed in preference to map-based controls.
Journal Article

Brake Timing Measurements for a Tractor-Semitrailer Under Emergency Braking

2009-10-06
2009-01-2918
The timing and associated levels of braking between initial brake pedal application and actual maximum braking at the wheels for a tractor-semitrailer are important parameters in understanding vehicle performance and response. This paper presents detailed brake timing information obtained from full scale instrumented testing of a tractor-semitrailer under various conditions of load and speed. Brake timing at steer, drive and semitrailer brake positions is analyzed for each of the tested conditions. The study further seeks to compare the full scale test data to predicted response from detailed heavy truck computer vehicle dynamics simulation models available in commercial software packages in order to validate the model's brake timing parameters. The brake timing data was collected during several days of full scale instrumented testing of a tractor-semitrailer performed at the Transportation Research Center, in East Liberty, Ohio.
Journal Article

Consideration of Critical Cornering Control Characteristics via Driving Simulator that Imparts Full-range Drift Cornering Sensations

2009-10-06
2009-01-2922
A driving simulator capable of duplicating the critical sensations incurred during a spin, or when a driver is engaged in drift cornering, was constructed by Mitsubishi Heavy Industries, Ltd., and Hiromichi Nozaki of Kogakuin University. Specifically, the simulator allows independent movement along three degrees of freedom and is capable of exhibiting extreme yaw and lateral acceleration behaviors. Utilizing this simulator, the control characteristics of drift cornering have become better understood. For example, after a J-turn behavior experiment involving yaw angle velocity at the moment when the drivers attention transitions to resuming straight ahead driving, it is now understood that there are major changes in driver behavior in circumstances when simulator motions are turned off, when only lateral acceleration motion is applied, when only yaw motion is applied, and when combined motions (yaw + lateral acceleration) are applied.
Journal Article

Recent Advances Towards an Integrated and Optimized Design of High Lift Actuation Systems

2009-11-10
2009-01-3217
For actuation of high lift surfaces in modern airplanes, complex mechanical shaft transmission systems powered by central drive units are deployed. The design of mechanical actuation systems, which have a major share in the weight of secondary flight controls, is a complex and challenging engineering task. Especially for specification of essential component and system design parameters within the preliminary design phase, engineering skill and experience are of significant importance owing to many uncertainties in component data and boundary conditions. Extensive trade-offs, as well as an evaluation of the system requirements and constraints lead to an iterative and time-consuming design process. Utilizing an integrated design assistance tool, mathematical functions and constraints can be modeled on system and component level and formalized as a constraint satisfaction problem (CSP). Thus, automated consistency checking and pruning of the solution space can be achieved.
X