Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Design of Experiments - Basic Simplified Taguchi

Design of Experiments is a statistically based, structured approach to product or process improvement that will quickly yield significant increases in product quality and subsequent decreases in cost.  Products and processes can be designed to function with less variation and with less sensitivity to environmental factors or customer usage. While still maintaining high quality from a customer's viewpoint, products and processes can utilize lower cost materials and methods.  Specifications can be opened-up with wider tolerances while still maintaining high quality for customers.  
Training / Education

Advanced Product Quality Planning

This course is verified by Probitas as meeting the AS9104/3A requirements for Continuing Professional Development. Advanced product quality planning (APQP) is essential to improving the way companies develop products and services.  It is a standardized, universally accepted fundamental business strategy. This strategy is applicable to all types of organizations including manufacturing and service companies, schools, hospitals, and governmental agencies. The aim of APQP is to enable the organization to produce products and provide services focused on satisfying customer’s needs, wants, and expectations.  
Training / Education

DFMEA Overview and Application

During this DFMEA Overview and Application course, participants will be introduced to important FMEA concepts, the basic theory behind the concepts, then discuss how these concepts can be applied to the customer's design FMEA activities. Participant activities include: reading assignments, group discussions, exercises, building Block Diagrams as a group, and beginning a DFMEA on a customer’s product.
Training / Education

Introduction to ISO 90012015 and IATF 169492016

The concept of a Quality System’s approach to business has been employed successfully and sometimes not so successfully for several decades. The International Organization for Standardization (ISO) has been supplying standards that list the key elements/clauses and requirements for building and implementing Quality Systems for over 30 years. These standards are based on the relatively simple concepts of Total Quality Management (TQM), essential principals of management, and a “Process” approach. These standards have been revised several times over the years to make them more realistic and user friendly.
Training / Education

Quality Function Deployment Transforming Voice of the Customer into Engineering Specifications

This course is offered in China only and presented in Mandarin Chinese. The course materials are bilingual (English and Chinese). Currently in the industry, especially within China, product requirement development is more of an experience-based process rather than a scientific methodology. This course addresses this issue and provides a more process-driven method for better requirement development through the Quality Function Deployment (QFD) methodology.  Real industrial examples are used to demonstrate how to systematically convert the voice of the customer data to engineering specifications using QFD.
Training / Education

PFMEA and the Control Plan - Overview and Application

The Process FMEA and Control Plan program introduces the basic concepts behind this important tool and provides training in how to conduct an effective PFMEA. First, the course explains what a PFMEA is and how it improves the long-term performance of your products, services and related processes by addressing process related failures. The role of the PFMEA in the overall framework of Quality Management System Requirements is explained as well as the role of the PFMEA in the Advanced Product Quality Planning (APQP) process. Additionally, the differences and relationships between the DFMEA and PFMEA are well defined.
Training / Education

Design of Experiments (DOE) for Engineers

2024-05-15
Design of Experiments (DOE) is a methodology that can be effective for general problem-solving, as well as for improving or optimizing product design and manufacturing processes. Specific applications of DOE include identifying proper design dimensions and tolerances, achieving robust designs, generating predictive math models that describe physical system behavior, and determining ideal manufacturing settings. This course utilizes hands-on activities to help you learn the criteria for running a DOE, the requirements and pre-work necessary prior to DOE execution, and how to select the appropriate designed experiment type to run.
Training / Education

Weibull-Log Normal Analysis Workshop

2024-05-14
RMS (Reliability-Maintainability-Safety-Supportability) engineering is emerging as the newest discipline in product development due to new credible, accurate, quantitative methods. Weibull Analysis is foremost among these new tools. New and advanced Weibull techniques are a significant improvement over the original Weibull approach. This workshop, originally developed by Dr. Bob Abernethy, presents special methods developed for these data problems, such as Weibayes, with actual case studies in addition to the latest techniques in SuperSMITH® Weibull for risk forecasts with renewal and optimal component replacement.
Video

Fault-Tree Generation for Embedded Software Implementing Dual-Path Checking

2011-11-17
Given the fast changing market demands, the growing complexity of features, the shorter time to market, and the design/development constraints, the need for efficient and effective verification and validation methods are becoming critical for vehicle manufacturers and suppliers. One such example is fault-tree analysis. While fault-tree analysis is an important hazard analysis/verification activity, the current process of translating design details (e.g., system level and software level) is manual. Current experience indicates that fault tree analysis involves both creative deductive thinking and more mechanical steps, which typically involve instantiating gates and events in fault trees following fixed patterns. Specifically for software fault tree analysis, a number of the development steps typically involve instantiating fixed patterns of gates and events based upon the structure of the code. In this work, we investigate a methodology to translate software programs to fault trees.
Video

Strategies for ISO 26262 Functional Safety Compliance

2011-12-12
Software content within commercial vehicles is growing exponentially. Emissions requirements, multiplexed communications, hybrid-electric technologies, active suspensions and smart sensors are amongst the technologies driving the increase in embedded code. Presenter Christoph Braeuchle , MKS Software, Inc.
Video

Data Driven Testing for HIL Systems

2011-12-05
The amount of software, computation and logic embedded into the vehicle systems is increasing. Testing of complex real time embedded systems using Hardware in Loop (HIL) simulations across different vehicle platforms has been a challenge. Data driven testing enables a qualitative approach to test these complex vehicle systems. It consists of a test framework wherein the test logic and data are independent of the HIL test environment. The data comprises variables used for both input values and output verification values. This data is maintained in a database or in the form of tables. Each row defines an independent test scenario. The entire test data is divided into three categories, High, Medium and Low. This feature gives the advantage of leveraging the same set of test data from Unit Level Testing phases to the Integration Test phase in the V-Cycle of software development. A data driven test approach helps the reuse of tests across vehicle platforms.
Video

Experience with Using Hardware-in-the-Loop Simulation for Validation of OBD in Powertrain Electronics Software

2011-12-05
These advanced checks have resulted in development of many new diagnostic monitors, of varying types, and a whole new internal software infrastructure to handle tracking, reporting, and self-verification of OBD related items. Due to this amplified complexity and the consequences surrounding a shortfall in meeting regulatory requirements, efficient and thorough validation of the OBD system in the powertrain control software is critical. Hardware-in-the-Loop (HIL) simulation provides the environment in which the needed efficiency and thoroughness for validating the OBD system can be achieved. A HIL simulation environment consisting of engine, aftertreatment, and basic vehicle models can be employed, providing the ability for software developers, calibration engineers, OBD experts, and test engineers to examine and validate both facets of OBD software: diagnostic monitors and diagnostic infrastructure (i.e., fault memory management).
SAE MOBILUS Subscription

Wiley Cyber Security Collection Add-On

2018-03-23
As an annual subscription, the Wiley Cyber Security Collection Add-On is available for purchase along with one or both of the following: Wiley Aerospace Collection Wiley Automotive Collection The titles from the Wiley Cyber Security Collection are included in the SAE MOBILUS® eBook Package. Titles: Network Forensics Penetration Testing Essentials Security in Fixed and Wireless Networks, 2nd Edition The Network Security Test Lab: A Step-by-Step Guide Risk Centric Threat Modeling: Process for Attack Simulation and Threat Analysis Applied Cryptography: Protocols, Algorithms and Source Code in C, 20th Anniversary Edition Computer Security Handbook, Set, 6th Edition Threat Modeling: Designing for Security Other available Wiley collections: Wiley SAE MOBILUS eBook Package Wiley Aerospace Collection Wiley Automotive Collection Wiley Computer Systems Collection Add-On (purchasable with the Wiley Aerospace Collection and/or the Wiley Automotive Collection)
Journal Article

Separable and Standard Monte Carlo Simulation of Linear Dynamic Systems Using Combined Approximations

2019-01-25
Abstract Reliability analysis of a large-scale system under random dynamic loads can be a very time-consuming task since it requires repeated studies of the system. In many engineering problems, for example, wave loads on an offshore platform, the excitation loads are defined using a power spectral density (PSD) function. For a given PSD function, one needs to generate many time histories to make sure the excitation load is modeled accurately. Global and local approximation methods are available to predict the system response efficiently. Each way has their advantages and shortcomings. The combined approximations (CA) method is an efficient method, which combines the advantages of local and global approximations. This work demonstrates two methodologies that utilize CA to reduce the cost of crude or separable Monte Carlo simulation (MCS) of linear dynamic systems when the excitation loads are defined using PSD functions.
Journal Article

Components Durability, Reliability and Uncertainty Assessments Based on Fatigue Failure Data

2014-09-30
2014-01-2308
Road vibrations cause fatigue failures in vehicle components and systems. Therefore, reliable and accurate damage and life assessment is crucial to the durability and reliability performances of vehicles, especially at early design stages. However, durability and reliability assessment is difficult not only because of the unknown underlying damage mechanisms, such as crack initiation and crack growth, but also due to the large uncertainties introduced by many factors during operation. How to effectively and accurately assess the damage status and quantitatively measure the uncertainties in a damage evolution process is an important but still unsolved task in engineering probabilistic analysis. In this paper, a new procedure is developed to assess the durability and reliability performance, and characterize the uncertainties of damage evolution of components under constant amplitude loadings.
Journal Article

A High Functional Safety Performance Level Machine Controller for a Medium Size Agricultural Tractor

2014-09-30
2014-01-2421
Functional safety requirements and solutions are more expensive when it comes to lower cost machines with less power but same functionalities with respect to big machines. The paper will show a real Electronic Control Unit (ECU) design of a machine controller, controlling both engine working point, transmission, and other utilities like PTO, 4WD, brakes and Differential Lock; the ECU was designed in accordance to ISO 25119 regulation, to meet AgPL = C or even D for some functionalities. The unit is a fully redundant electronic control unit with two CAN networks and some special safe state oriented mechanism, that allow the Performance Level C with less software analysis requirements compared with traditional solutions. All safety critical sensors are redounded and singularly diagnosable, all command effects are directly observable and most of commands are directly diagnosable.
Journal Article

Virtual Vehicle Design based on Key Performance Indicators Assessing the Vehicle Portfolio

2014-09-30
2014-01-2415
This paper focuses on the manufacturer's conflict in the conceptual design of commercial vehicles between highly customized special vehicles and the greatest possible degree of standardization. Modularity and standardization are crucial success factors for realizing high variance at the best cost efficiency in development and production as well for achieving the highest quality standards at reduced efforts for technical validation. The presented virtual design approach for commercial vehicle concepts allows for purposeful design and integration of new concepts and technologies on the component level in an existing product portfolio - not neglecting manufacture's portfolio requirements concerning standardization and modularity. The integrated tool chain helps to bring trade-offs to a head that exist in balancing between dedicated vehicles with best customer-relevant characteristics and standardized vehicles with the highest degree of commonality.
Technical Paper

Bump Steer and Brake Steer Optimization in Steering Linkages Through TAGUCHI Method DOE Analysis

2021-09-22
2021-26-0079
Due to recent infrastructural development and emerging competitive automotive markets, there is seen a huge shift in customer’s demand and vehicle drivability pattern in commercial vehicle industry. Now apart from ensuring better vehicle durability and best in class tyre life and fuel mileage, a vehicle manufacturer also has to focus on other key attributes like driver’s safety and ride comfort. Thus, for ensuring enhanced drivability, key parameters for ensuring better vehicle handling includes optimization of bump steer and brake steer. Both bump steer and brake steer are vehicle’s undesirable phenomenon where a driver is forced to constantly make steering wheel correction in order to safely maneuver the vehicle in the desired path.
X