Refine Your Search

Topic

Search Results

Training / Education

Navigating Requirements for International Certification of Aviation Products

This course describes the basic elements of the process for achieving a successful aircraft certification globally once certification by the State of Design has been accomplished. The regulatory framework established under ICAO is presented with discussion of how major countries around the world comply with the ICAO Standards and Recommended Practices (SARPs). The uncertainty of how each country performs validation is a challenge. This course identifies common validation practices and key bilateral agreements which facilitate acceptance of aviation products from one country to another.
Training / Education

A Primer on Regulations and Liability Considerations for HAV’s

Potential regulations surrounding the development, testing and commercial launch of Highly Automated Vehicles and possible liability exposure for the manufacturing and operation of Highly Automated Vehicles are fluid and changing areas, that will continue to evolve over the next several years. The first half of this course reviews where regulations are at the state and federal levels, what actions are currently under consideration, how current regulations will need to change to accommodate HAV’s, and how and when new regulations might be implemented. The second half covers both common law and strict liability and how it may apply to HAV’s.
Training / Education

FAA/EASA Certification, Methods of Compliance for 29.801 Ditching

Certifying an aircraft, part or appliance can be a challenge.  The FAA/EASA procedures can be frustrating and a maze of rules, policy and guidance. Understanding the process and procedures can provide you with a competitive edge and reduce your time obtaining a Certification approval. This course provides an overview of the Federal Aviation Administration (FAA) and European Aviation Safety Agency (EASA) policies, guidelines and requirements leading to Type and Supplemental Type airworthiness approvals. This course has a focus on 29.801 Ditching and EASA 29.802 Emergency Flotation.
Training / Education

FAA/EASA Certification, Methods of Compliance for 29.865 External Loads

Certifying an aircraft, part or appliance can be challenge. The FAA/EASA procedures can be frustrating and a maze of rules, policy and guidance. Understanding the process and procedures can provide you with a competitive edge and reduce your time obtaining a Certification approval. This course provides an overview of the Federal Aviation Administration (FAA) and European Aviation Safety Agency (EASA) policies, guidelines and requirements leading to Type and Supplemental Type airworthiness approvals. This course has a focus on 29.865 External loads to include hoists, belly-mounted external structure and cargo hook loads.
Training / Education

DO-326A and ED-202A An Introduction to the New and Mandatory Aviation Cyber-Security Essentials

2024-07-29
This course will introduce participants to industry best practices for real-world aviation cyber-security risk-assessment, development & assurance. Participants will learn the information necessary to help minimize DO-326/ED-202-set compliance risks and costs, while also optimizing cyber-security levels for the development, deployment and in-service phases Topics such as aircraft security aspects of safety, systems-approach to security, security planning, the airworthiness security process, and security effectiveness assurance will be covered.
Training / Education

AS13100 and RM13004 Design and Process Failure Mode and Effects Analysis and Control Plans

2024-07-03
This course is verified by Probitas Authentication as meeting the AS9104/3A requirements for continuing Professional Development. In the Aerospace Industry there is a focus on Defect Prevention to ensure that quality goals are met. Failure Mode and Effects Analysis (PFMEA) and Control Plan activities are recognized as being one of the most effective, on the journey to Zero Defects. This two-day course is designed to explain the core tools of Design Failure Mode and Effects Analysis (DFMEA), Process Flow Diagrams, Process Failure Mode and Effects Analysis (PFMEA) and Control Plans as described in AS13100 and RM13004.
Standard

NATIONAL AEROSPACE AND DEFENSE CONTRACTORS ACCREDITATION PROGRAM REQUIREMENTS FOR NONCONVENTIONAL MACHINING

2002-02-01
HISTORICAL
AS7116
This Aerospace Standard (AS) establishes the requirements for suppliers of Nonconventional Machining Services to be accredited by the National Aerospace and Defense Contractors Accreditation Program (NADCAP). NADCAP accreditation is granted in accordance with SAE AS7003 after demonstration of compliance with the requirements herein. The requirements may be supplemented by additional requirements specified by the NADCAP Nonconventional Machining and Surface Enhancement (NMSE) Task Group. Using the corresponding Audit Criteria (PRI AC7116) will ensure that accredited Nonconventional Machining suppliers meet all of the requirements in this standard and all applicable supplementary standards. The purpose of this audit program is to assess a supplier's ability to consistently provide a product or service that conforms to the technical specifications and customer requirements.
Standard

AIRBORNE RECORDER FILE FORMAT

1992-01-01
CURRENT
ARINC657
This document defines the characteristics necessary to standardize the airborne recorder download file format in order to facilitate data import, transcription, and exchange. A standardized data format will reduce the variety of readout equipment required for airborne recorder data transcription. This document defines the detailed architecture of the Recorder Standard Output (RSO) file. The architecture is a tagged file structure within which many different files and their formats can be supported. The structure is necessary to support newer recording requirements for flight data, data link, audio, and image recording. This structure is intended for use with all civil recorders and should support use with military recorders.
Journal Article

Numerical Analysis of Blast Protection Improvement of an Armored Vehicle Cab by Composite Armors and Anti-Shock Seats

2018-12-05
Abstract The objective of this article is to evaluate the effects of different blast protective modules to military vehicle structures and occupants. The dynamic responses of the V-shape integral basic armor, the add-on honeycomb sandwich structure module, and the anti-shock seat-dummy system were simulated and analyzed. The improvements of occupant survivability by different protective modules were compared using occupant injury criteria. The integral armored cab can maintain the integrity of the cab body structure. The add-on honeycomb sandwich armor reduces the peak structural deformation and velocity of the cab floor by 34.9% and 47.4%, respectively, compared with the cab with integral armors only. The integral armored cab with the anti-shock seat or the honeycomb sandwich structures reduces the occupant shock responses below the injury criteria. For different blast threat intensities, the selection of appropriate protective modules can meet protection requirements.
Journal Article

Algorithm Development for Avoiding Both Moving and Stationary Obstacles in an Unstructured High-Speed Autonomous Vehicular Application Using a Nonlinear Model Predictive Controller

2020-10-19
Abstract The advancement in vision sensors and embedded technology created the opportunity in autonomous vehicles to look ahead in the future to avoid potential obstacles and steep regions to reach the target location as soon as possible and yet maintain vehicle safety from rollover. The present work focuses on developing a nonlinear model predictive controller (NMPC) for a high-speed off-road autonomous vehicle, which avoids undesirable conditions including stationary obstacles, moving obstacles, and steep regions while maintaining the vehicle safety from rollover. The NMPC controller is developed using CasADi tools in the MATLAB environment. The CasADi tool provides a platform to formulate the NMPC problem using symbolic expressions, which is an easy and efficient way of solving the optimization problem. In the present work, the vehicle lateral dynamics are modeled using the Pacejka nonlinear tire model.
Journal Article

Development and Optimization of Formation Flying for Unmanned Aerial Vehicles Using Particle Swarm Optimization Based on Reciprocal Velocity Obstacles

2022-09-23
Abstract In this article, a formation flying technique designed for a multiple unmanned aerial vehicles (multi-UAV) system to provide low-cost and efficient solution for civilian and military applications is presented. First, a modular leader-follower formation algorithm was developed to accomplish the formation flying with off-the-shelf low-cost components and sensors. Second, a proportional-integral-derivative (PID) controller was utilized for velocity control of the UAVs to maintain the tight formation. Third, a particle swarm optimization-optimized reciprocal velocity obstacles (PSO-RVO) algorithm was utilized for obstacles avoidance and collision avoidance between the UAVs while navigating, with the aid of sonar ranging sensors onboard. The formation flying algorithm developed was tested through both simulation and experiment using two quadcopters with global positioning system (GPS) signals.
Standard

Aircraft Flotation Analysis

2022-12-20
CURRENT
AIR1780B
This document is divided into five parts. The first part deals with flotation analysis features and definitions to acquaint the engineer with elements common to the various methods and the meanings of the terms used. The second part identifies and describes current flotation analysis methods. Due to the close relationship between flotation analysis and runway design, methods for the latter are also included in this document. As runway design criteria are occasionally used for flotation evaluation, including some for runways built to now obsolete criteria, a listing of the majority of these criteria constitutes the third part. The fourth part of this document tabulates the most relevant documents, categorizing them for commercial and civil versus military usage, by military service to be satisfied, and by type of pavement. This document concludes with brief elaborations of some concepts for broadening the analyst’s understanding of the subject.
Standard

MILITARY TIRE GLOSSARY

1991-05-01
HISTORICAL
J2013_199105
This glossary of tire military/industry terminology is a direct result of many months of planned and coordinated work by the SAE Military/Industry Tire Technology Nomenclature Task Force. This effort was put forth with the hope of leading the military and industry towards standardization of terminology. This glossary represents the latest state-of-the-art terms and definitions for military use. This SAE Recommended Practice shall remain open for comments from the reader and shall also be reviewed and updated periodically. Many similar terms and definitions were reviewed from which the ones best applied to military use were selected. It is the purpose of this task force to provide technical definitions in present day use. Please do not hesitate to inform the task force of any improvements which may be required.
Technical Paper

Optimizing Occupant Restraint Systems for Tactical Vehicles in Frontal Crashes

2018-04-03
2018-01-0621
The objective of this study was to optimize the occupant restraint systems for a light tactical vehicle in frontal crashes. A combination of sled testing and computational modeling were performed to find the optimal seatbelt and airbag designs for protecting occupants represented by three size of ATDs and two military gear configurations. This study started with 20 sled frontal crash tests to setup the baseline performance of existing seatbelts, which have been presented previously; followed by parametric computational simulations to find the best combinations of seatbelt and airbag designs for different sizes of ATDs and military gear configurations involving both driver and passengers. Then 12 sled tests were conducted with the simulation-recommended restraint designs. The test results were further used to validate the models. Another series of computational simulations and 4 sled tests were performed to fine-tune the optimal restraint design solutions.
Technical Paper

Decomposition and Coordination to Support Tradespace Analysis for Ground Vehicle Systems

2022-03-29
2022-01-0370
Tradespace analysis is used to define the characteristics of the solution space for a vehicle design problem enabling decision-makers (DMs) to evaluate the risk-benefit posture of a vehicle design program. The tradespace itself is defined by a set of functional objectives defined by vehicle simulations and evaluating the performance of individual design solutions that are modeled by a set of input variables. Of special interest are efficient design solutions because their perfomance is Pareto meaning that none of their functional objective values can be improved without decaying the value of another objective. The functional objectives are derived from a combination of simulations to determine vehicle performance metrics and direct calculations using vehicle characteristics. The vehicle characteristics represent vendor specifications of vehicle subsystems representing various technologies.
X