Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Introduction to Airframe Engineering Design for Manufacturing, Assembly and Automation

This course is verified by Probitas Authentication as meeting the AS9104/3A requirements for continuing Professional Development. Why is a design for manufacturing, assembly and automation so important? This introductory course on airframe engineering will cover the importance of design for manufacturing, assembly and automation in aerospace. It will review what the key drivers are for a “good” design and some of the key points for manufacturing and assembly of aircraft components. It will look at how an engineer can combine traditional technologies with new, cutting-edge technologies, to determine the best scenario for success.
Training / Education

Design for Manufacturing & Assembly

Design for Manufacturing and Assembly (DFM+A), pioneered by Boothroyd and Dewhurst, has been used by many companies around the world to develop creative product designs that use optimal manufacturing and assembly processes.  Correctly applied, DFM+A analysis leads to significant reductions in production cost, without compromising product time-to-market goals, functionality, quality, serviceability, or other attributes.  This course will include information on how DFM+A fits in with QFD, Concurrent Engineering, Robust Engineering, and other disciplines.
Training / Education

Design for Manufacturing & Assembly (DFM/DFA)

2024-05-13
Design for Manufacturing and Assembly (DFM+A), pioneered by Boothroyd and Dewhurst, has been used by many companies around the world to develop creative product designs that use optimal manufacturing and assembly processes. Correctly applied, DFM+A analysis leads to significant reductions in production cost, without compromising product time-to-market goals, functionality, quality, serviceability, or other attributes. In this two-day course, you will not only learn the Boothroyd Dewhurst Method, you will actually apply it to your own product design!
Technical Paper

Design Analysis of High Power Density Additively Manufactured Induction Motor

2016-09-20
2016-01-2061
Induction machines (IM) are considered work horse for industrial applications due to their rugged, reliable and inexpensive nature; however, their low power density restricts their use in volume and weight limited environments such as an aerospace, traction and propulsion applications. Given recent advancements in additive manufacturing technologies, this paper presents opportunity to improve power density of induction machines by taking advantage of higher slot fill factor (SFF) (defined as ratio of bare copper area to slot area) is explored. Increase in SFF is achieved by deposition of copper in much more compact way than conventional manufacturing methods of winding in electrical machines. Thus a design tradeoff study for an induction motor with improved SFF is essential to identify and highlight the potentials of IM for high power density applications and is elaborated in this paper.
Book

Composite Materials: Advanced Materials and Lightweighting (DVD)

2015-04-15
technology breakthroughs. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance. In the episode "Composite Materials: Advanced Materials and Lightweighting" (30:20), Molded Fiber Glass Companies, known for its deep involvement in the creative development of the molded fiberglass process for the Corvette, demonstrates the manufacturing of sheet molded composite for fiberglass parts. Tanom Motors introduces the Tanom Invader , a blend between an automobile and a motorcycle made exclusively with composite materials. Finally, Euro-Composites demonstrates the manufacturing of honeycomb core material made out of aramid paper and phenolic resin used in aircraft structures.
Video

Integrating Formal Model Checking with the RTEdge™ AADL Microkernel

2012-03-21
Edgewater Computer Systems Inc. product RTEdge Platform 1.2 is a software toolset supporting proof based engineering, implementation and deployment of software components, built using the RTEdge AADL Microkernel modeling subset. This is a small subset of the AADL component model and execution semantics, covering threads and thread-groups communicating solely through asynchronous event ports and through explicitly shared data ports. Threads behavior is expressed as state machines and dispatch run time semantics is encoded in a Run-time Executive, enforcing pre-emptive priority dispatch based on statically assigned event priorities, with ceiling priority protocol access to shared data. This simple AADL microkernel semantic core can support all dispatch policies, communication and synchronization mechanisms of a fully fledged AADL run time environment, permitting the systematic use of the RTEdge static analysis tools for AADL compliant software components.
Video

Business Model for Successful Commercialization of Aircraft Designs

2012-03-21
This article characterizes the special features of drilling of CFRP/Titanium and -Aluminium stacks. Simplified theoretic models will show how CFRP/Titanium stacks should be machined without scratches and burn marks contacting carbon. Low axial forces and smart chip removal technology are the main characteristics of the drilling tool technology, optimized to reach H8 quality in one shot operation. Presenter Peter Mueller-Hummel, Cutting Tools Inc.
Video

Exploring the Manual Forming of Complex Geometry Composite Panels for Productivity and Quality Gains in Relation to Automated Forming Capabilities

2012-03-23
In a variety of industries there is a growing need to manufacture high quality carbon fibre epoxy matrix composite structures at greater production rates and lower costs than has historically been the case. This has developed into a desire for the automation of the manufacture of components, and in particular the lay-up phase, with Automated Tape Laying (ATL) and Fibre Placement (AFP) the most popular choices. When used for large primary structures there are such potential gains to be had that both techniques have seen rapid implementation into manufacturing environments. But significant concerns remain and these have limited their wider adoption into secondary structure manufacturing, where manual forming of woven broadgoods is dominant. As a result the manufacture of secondary structures is generally explored for costs reduction through drape simulation and lower cost materials.
Video

Spotlight on Design: 3D Printing in the Automotive Industry

2015-12-22
“Spotlight on Design” features video interviews and case studies, focusing on technology breakthroughs, hands-on testimonials, and the importance of fundamentals. Viewers are virtually taken to industry labs and research centers to learn how design engineers solve real-life problems. These challenges include enhancing product performance, reducing costs, improving quality and safety, while decreasing environmental impact, and achieving regulatory compliance. In the episode “Additive Manufacturing: 3D Printing in the Automotive Industry” (20:00), engineers from Fiat Chrysler Corporation (FCA) explain the importance of using 3D printing to test multiple design scenarios and develop solutions that can be quickly evaluated on test tracks. And Local Motors shows how it builds a vehicle from the ground up with a 3D printer, and without a traditional assembly line.
Video

Spotlight on Design Insight: Composite Materials: New Trends in Automotive Design

2015-05-08
“Spotlight on Design: Insight” features an in-depth look at the latest technology breakthroughs impacting mobility. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance. Telematics, the convergence of telecommunications and informatics, uses electronic and computer technology built in to the vehicle to provide vehicle tracking, satellite navigation, wireless technology, and diagnostic information. In the episode “Diagnostics and Prognostics: Telematics Deep Dive” (8:09), an engineer from Delphi’s Telematics program discusses the advantages and challenges of telematics devices for the automotive industry, demonstrates the installation of an aftermarket telematics device, and shows how telematics can enhance diagnostics and preventative maintenance.
Video

Spotlight on Design: Composite Materials: Advanced Materials and Lightweighting

2015-04-15
“Spotlight on Design” features video interviews and case study segments, focusing on the latest technology breakthroughs. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance. In the episode “Composite Materials: Advanced Materials and Lightweighting” (30:20), Molded Fiber Glass Companies, known for its deep involvement in the creative development of the molded fiberglass process for the Corvette, demonstrates the manufacturing of sheet molded composite for fiberglass parts. Tanom Motors introduces the Tanom Invader, a blend between an automobile and a motorcycle made exclusively with composite materials. Finally, Euro-Composites demonstrates the manufacturing of honeycomb core material made out of aramid paper and phenolic resin used in aircraft structures.
Video

Prepreg Slit Tape and Fiber Placement: Developing High Performance Material Delivery Systems for High-Output AFP Lines

2012-03-23
There are worldwide activities in developing guidelines and standards for fiber optic sensors. Fiber optic sensors (FOS) are increasingly demanded for structural health monitoring purposes and for measurement of physical and chemical quantities because of their specific features. However, they are not yet widely established for practical use due to a lack of guidelines and confirmed standards. Therefore, there are few groups worldwide which are very active in developing standards for use of FOS in different fields, particularly driven from aircraft industry, oil industry or the necessity to provide sensor systems for health monitoring of structures with a certain level of risk. The benefits of guidelines and/or standards on the way to well-validated and well-specified sensor systems will be presented by means of related examples. The presentation will also give an overview on the state-of-the-art and most relevant activities. Results achieved are discussed.
Video

Incorporating AFP Material Delivery Technology on Commercially Available Robot Machine Platforms

2012-03-23
: Fiber Placement equipment has historically been very large and very expensive. Therefore, the AFP process has been mostly exclusive to the larger aerospace companies of the world. In order to achieve more widespread use of the AFP process, a wider variety of machine configurations must be offered and cost of the equipment must be decreased. Commercially available, articulated robotic arms have been identified as an attractive, low cost option for AFP machine platforms. However, incorporating AFP material delivery technology with robotic arms has many challenges. These challenges relate to both hardware and software issues. This presentation will address the technical challenges of using robots as a machine platform for the AFP process and review the current status of this composites lamination equipment technology. Presenter Frederic Challois, Coriolis Composites
Video

Orbital Drilling Machine for One Way Assembly in Hard Materials

2012-03-23
In Aeronautic industry, when we launch a new industrialization for an aircraft sub assembly we always have the same questions in mind for drilling operations, especially when focusing on lean manufacturing. How can we avoid dismantling and deburring parts after drilling operation? Can a drilling centre perform all the tasks needed to deliver a hole ready to install final fastener? How can we decrease down-time of the drilling centre? Can a drilling centre be integrated in a pulse assembly line? How can we improve environmental efficiency of a drilling centre? It is based on these main drivers that AIRBUS has developed, with SPIE and SOS, a new generation of drilling centre dedicated for hard materials such as titanium, and high thicknesses. The first application was for the assembly of the primary structure of A350 engine pylons. The main solution that was implemented meeting several objectives was the development of orbital drilling technology in hard metal stacks.
Video

Detecting Damage and Damage Location on Large Composite Parts using RFID Technology

2012-03-16
Probabilistic methods are used in calculating composite part design factors for, and are intended to conservatively compensate for worst case impact to composite parts used on space and aerospace vehicles. The current method to investigate impact damage of composite parts is visual based upon observation of an indentation. A more reliable and accurate determinant of impact damage is to measure impact energy. RF impact sensors can be used to gather data to establish an impact damage benchmark for deterministic design criteria that will reduce material applied to composite parts to compensate for uncertainties resulting from observed impact damage. Once the benchmark has been established, RF impact sensors will be applied to composite parts throughout their life-cycle to alert and identify the location of impact damage that exceeds the maximum established benchmark for impact.
X