Refine Your Search

Search Results

Viewing 1 to 5 of 5
Standard

Engine Monitoring System Reliability and Validity

2014-05-01
HISTORICAL
AIR5120
For Engine Monitoring Systems to meet their potential for improved safety and reduced operation and support costs, significant attention must be focused on their reliability and validity throughout the life cycle. This AIR will provide program managers, designers, developers and customers a concise reference of the activities, approaches and considerations for the development and verification of a highly reliable engine monitoring system. When applying the guidelines of this AIR it should be noted that engine monitoring systems physically or functionally integrated with the engine control system and/or performing functions that affect engine safety or are used to effect continued operation or return to service decisions shall be subject to the Type Investigation of the product in which they'll be incorporated and have to show compliance with the applicable airworthiness requirements as defined by the responsible Aviation Authority.
Standard

Aircraft Gas Turbine Engine Health Management System Development and Integration Guide

2016-03-05
CURRENT
ARP5120
ARP5120 provides recommended best practices, procedures, and technology to guide the physical and functional design, development, integration, verification, and validation of highly reliable Engine Health Management (EHM) systems for aircraft engines and Auxiliary Power Units (APUs). This SAE Aerospace Recommended Practice (ARP) also serves as a concise reference of considerations, approaches, activities, and requirements for producing the end-to-end engine health management system comprised of both on and off-board subsystems for the sensing, acquisition, analysis, detection, and data handling functions for EHM. These functions may also be used to effect continued operation or return to service decisions when demonstrated as compliant with the applicable airworthiness requirements defined by the responsible Aviation Authority. Where practical, this document delineates between military and commercial practices.
Standard

Aircraft Gas Turbine Engine Health Management System Development and Integration Guide

2021-09-29
WIP
ARP5120A
ARP5120 provides recommended best practices, procedures, and technology to guide the physical and functional design, development, integration, verification, and validation of highly reliable Engine Health Management (EHM) systems for aircraft engines and Auxiliary Power Units (APUs). This SAE Aerospace Recommended Practice (ARP) also serves as a concise reference of considerations, approaches, activities, and requirements for producing the end-to-end engine health management system comprised of both on and off-board subsystems for the sensing, acquisition, analysis, detection, and data handling functions for EHM. These functions may also be used to effect continued operation or return to service decisions when demonstrated as compliant with the applicable airworthiness requirements defined by the responsible Aviation Authority. Where practical, this document delineates between military and commercial practices.
Standard

A Methodology for Quantifying the Performance of an Engine Monitoring System

2017-10-13
HISTORICAL
AIR4985
The purpose of this SAE Aerospace Information Report (AIR) is to present a quantitative approach for evaluating the performance and capabilities of an Engine Monitoring System (EMS). The value of such a methodology is in providing a systematic means to accomplish the following: 1 Determine the impact of an EMS on key engine supportability indices such as Fault Detection Rate, Fault Isolation Rate, Mean Time to Diagnose, In-flight Shutdowns (IFSD), Mission Aborts, and Unscheduled Engine Removals (UERs). 2 Facilitate trade studies during the design process in order to compare performance versus cost for various EMS design strategies, and 3 Define a “common language” for specifying EMS requirements and the design features of an EMS in order to reduce ambiguity and, therefore, enhance consistency between specification and implementation.
X