Refine Your Search

Topic

Affiliation

Search Results

Journal Article

A Novel Hierarchical Global Chassis Control System for Distributed Electric Vehicles

2014-04-01
2014-01-0091
The current global chassis control (GCC) frequently makes use of decoupled control methods which depend on driving condition partition and simple rule-based vertical force distribution, and are insufficient to obtain optimal vehicle dynamics performance. Therefore, a novel hierarchical global chassis control system for a distributed electric vehicle (DEV), which is equipped with four wheel driving/steering and active suspension systems, is developed in this paper. The control system consists of three layers: in the upper layer, the desired forces/moments based on vehicular driving demands are determined; in the middle layer, a coordinated control method of longitudinal/lateral/vertical tire forces are proposed; in the lower layer, the driving/steering/suspension control is conducted to realize each distributed tire force.
Journal Article

Influence of Feature Lines of Vehicle Hood Styling on Headform Kinematics and Injury Evaluation in Car-to-Pedestrian Impact Simulations

2014-04-01
2014-01-0518
Vehicle hood styling has significant influence on headform kinematics in assessment tests of pedestrian impact protection performance. Pedestrian headform kinematics on vehicle front-end models with different hood styling characteristics is analyzed based on finite element modeling. More elevated feature lines near hood boundary and the following continuous hood surface towards fender will result in a different headform motion. It can lead to larger deformation space, more rotation and earlier rebound of the headform impactor, which will benefit the head impact protection performance. In addition, hood geometry characteristics such as hood angle and curvature have effects on structural stiffness. Therefore, inclusion of considerations on pedestrian head protection into the vehicle hood styling design stage may lead to a more effective and efficient engineering design process on headform impact analysis.
Journal Article

A Robust Lane-Keeping ‘Co-Pilot’ System Using LBMPC Method

2015-04-14
2015-01-0322
To provide a feasible transitional solution from all-by-human driving style to fully autonomous driving style, this paper proposed concept and its control algorithm of a robust lane-keeping ‘co-pilot’ system. In this a semi-autonomous system, Learning based Model Predictive Control (LBMPC) theory is employed to improve system's performance in target state tracking accuracy and controller's robustness. Firstly, an approximate LTI model which describes driver-vehicle-road closed-loop system is set up and real system's deviations from the LTI system resulted by uncertainties in the model are regarded as bounded disturbance. The LTI model and bounded disturbances make up a nominal model. Secondly, a time-varying model which is composed of LTI model and an ‘oracle’ component is designed to observe the possible disturbances numerically and it is online updated using Extended Kalman Filter (EKF).
Journal Article

Experimental Investigation of Different Blends of Diesel and Gasoline (Dieseline) in a CI Engine

2014-10-13
2014-01-2686
Combustion behaviour and emissions characteristics of different blending ratios of diesel and gasoline fuels (Dieseline) were investigated in a light-duty 4-cylinder compression-ignition (CI) engine operating on partially premixed compression ignition (PPCI) mode. Experiments show that increasing volatility and reducing cetane number of fuels can help promote PPCI and consequently reduce particulate matter (PM) emissions while oxides of nitrogen (NOx) emissions reduction depends on the engine load. Three different blends, 0% (G0), 20% (G20) and 50% (G50) of gasoline mixed with diesel by volume, were studied and results were compared to the diesel-baseline with the same combustion phasing for all experiments. Engine speed was fixed at 1800rpm, while the engine load was varied from 1.38 to 7.85 bar BMEP with the exhaust gas recirculation (EGR) application.
Technical Paper

Comparative Research on Emission Characteristic and Combustion Characteristic of Gasoline Direct Injection and Port Fuel Injection for Free-Piston Linear Generator

2020-09-15
2020-01-2220
As a new type of energy, free-piston linear generator (FPLG) attracts more research on its stable operation and power performance, while less on its combustion and emission performance. So, in this paper, the emission characteristics of FPLG in two different modes are studied through a port fuel injection (PFI) mode which was verified by the experiment and a gasoline direct injection (GDI) mode. The results showed that: both the GDI mode and the PFI mode produced large amounts of nitrogen oxide (NOx) during the working process. But the GDI mode produced before the PFI mode and it produced nearly 2 times than the PFI mode. However, the formation rate of NOx in GDI mode is much lower than that in PFI mode. Meanwhile, in both modes, 90% of NOX was generated in the cylinder at the temperature higher than 1750K, and only about 10% of NOX was generated at a temperature lower than 1750K.
Technical Paper

Investigation on the Deformation of Injector Components and Its Influence on the Injection Process

2020-04-14
2020-01-1398
The deformation of injector components cannot be disregarded as the pressure of the system increases. Deformation directly affects the characteristics of needle movement and injection quantity. In this study, structural deformation of the nozzle, the needle and the control plunger under different pressures is calculated by a simulation model. The value of the deformation of injector components is calculated and the maximum deformation location is also determined. Furthermore, the calculated results indicates that the deformation of the control plunger increases the control chamber volume and the cross-section area between the needle and the needle seat. A MATLAB model is established to The influence of structural deformation on needle movement characteristics and injection quantity is investigate by a numerical model. The results show that the characteristic points of needle movement are delayed and injection quantity increases due to the deformation.
Journal Article

Fuzzy-PID Speed Control of Diesel Engine Based on Load Estimation

2015-04-14
2015-01-1627
In order to improve the anti-disturbance performance of engine-load and the effect on speed control for the diesel engine, the paper presents the fuzzy-PID speed control strategy in the architecture of torque-based control. The engine-load estimation algorithm is designed based on the mean-value-model and crankshaft dynamics model, and the estimation precision is validated by engine test in both steady and dynamic conditions. Through the experiment verification of the diesel engine, the fuzzy-PID control strategy based on load estimation can significantly improve the anti-disturbance performance of engine-load in the speed control.
Journal Article

On the Effect of Friction Law in Closed-Loop Coupling Disc Brake Model

2016-04-05
2016-01-0476
Brake squeal is a complex dynamics instability issue for automobile industry. Closed-loop coupling model deals with brake squeal from a perspective of structural instability. Friction characteristics between pads and disc rotor play important roles. In this paper, a closed-loop coupling model which incorporates negative friction-velocity slope is presented. Different from other existing models where the interface nodes are coupled through assumed springs, they are connected directly in the presented model. Negative friction slope is taken into account. Relationship between nodes’ frictional forces, relative speeds and brake pressure under equilibrant sliding and vibrating states is analysed. Then repeated nodal coordinate elimination and substructures’ modal coordinate space transformation of system dynamic equation are performed. It shows that the negative friction slope leads to negative damping items in dynamic equation of system.
Journal Article

Study on Repeated-Root Modes in Substructure Modal Composition Analysis

2016-04-05
2016-01-0477
The dynamic properties of disc rotor play important role in the NVH performance of a disc brake system. Disc rotor in general is a centrosymmetric structure. It has many repeated-root modes within the interested frequency range and they may have significant influence on squeal occurrence. A pair of repeated-root modes is in nature one vibration mode. However, in current complex eigenvalue analysis model and relevant analysis methods, repeated-root modes are processed separately. This may lead to contradictory result. This paper presents methods to deal with repeated-root modes in substructure modal composition (SMC) analysis to avoid the contradiction. Through curve-fitting technique, the modal shape coefficients of repeated-root modes are expressed in an identical formula. This formula is used in SMC analysis to obtain an integrated SMC value to represent the total influence of two repeated-root modes.
Journal Article

A Semi-Detailed Chemical Kinetic Mechanism of Acetone-Butanol-Ethanol (ABE) and Diesel Blends for Combustion Simulations

2016-04-05
2016-01-0583
With the development of advanced ABE fermentation technology, the volumetric percentage of acetone, butanol and ethanol in the bio-solvents can be precisely controlled. To seek for an optimized volumetric ratio for ABE-diesel blends, the previous work in our team has experimentally investigated and analyzed the combustion features of ABE-diesel blends with different volumetric ratio (A: B: E: 6:3:1; 3:6:1; 0:10:0, vol. %) in a constant volume chamber. It was found that an increased amount of acetone would lead to a significant advancement of combustion phasing whereas butanol would compensate the advancing effect. Both spray dynamic and chemistry reaction dynamic are of great importance in explaining the unique combustion characteristic of ABE-diesel blend. In this study, a semi-detailed chemical mechanism is constructed and used to model ABE-diesel spray combustion in a constant volume chamber.
Technical Paper

Numerical Simulation and Optimization for Combustion of an Opposed Piston Two-Stroke Engine for Unmanned Aerial Vehicle (UAV)

2020-04-14
2020-01-0782
An opposed piston two-stroke engine is more suitable for use in an unmanned aerial vehicle because of its small size, excellent self-balancing, stable operation, and low noise. Consequently, in this study, based on experimental data for a prototype opposed piston two-stroke engine, numerical simulation models were established using GT-POWER for 1D simulation and AVL-FIRE for 3D CFD simulation. The mesh grid and solver parameters for the numerical model of the CFD simulation were determined to guarantee the accuracy of the numerical simulation, before studying and optimizing the ventilation efficiency of the engine with different dip angles. Furthermore, the fuel spray and combustion were analyzed and optimized in details.
Technical Paper

Experimental and Kinetic Investigation of Pressure and Temperature Effects on Burning Characteristics of n-Heptane/Air/Hydrogen up to Near Lean Burn Limits

2020-04-14
2020-01-0343
Incomplete-combustion and misfire are the hurdles in internal combustion engines to run on ultra-lean mixture, whereas high thermal efficiency has been achieved at lean mixture. The burning characteristics of n-heptane with 0% and 30% hydrogen additions were studied at 393K-453K and 100kPa-300kPa up to near lean burn limits, λ=0.8-2.0. The flame appeared in spherical shape only by 37-mJ ignition energy (IE) at λ=0.8-1.5, while further lean mixture, ≥1.6, could be ignited only by 3000-mJ with the distorted flame shape. The flame buoyed in the mixture when burning velocity calculated by kinetic mechanism was equal or less than 19.83 cm/s at the initial conditions of λ=1.8, 393K and 100kPa. The thermal instability under impact of initial pressure and temperature was higher at lean mixture than at stoichiometric mixture.
Technical Paper

Controlling Strategy for the Performance and NOx Emissions of the Hydrogen Internal Combustion Engines with a Turbocharger

2020-04-14
2020-01-0256
Hydrogen fuel is a future energy to solve the problems of energy crisis and environmental pollution. Hydrogen internal combustion engines can combine the advantage of hydrogen without carbon pollution and the main basic structure of the traditional engines. However, the power of the port fuel injection hydrogen engines is smaller than the same volume gasoline engine because the hydrogen occupies the volume of the cylinder and reduces the air mass flow. The turbocharger can increase the power of hydrogen engines but also increase the NOx emission. Hence, a comprehensive controlling strategy to solve the contradiction of the power, BTE and NOx emission is important to improve the performance of hydrogen engines. This paper shows the controlling strategy for a four-stroke, 2.3L hydrogen engine with a turbocharger. The controlling strategy divides the operating conditions of the hydrogen engine into six parts according to the engine speeds and loads.
Journal Article

Study on Hydrodynamic Torque Converter Parameter Integrated Optimization Design System Based on Tri-Dimensional Flow Field Theory

2008-06-23
2008-01-1525
Hydrodynamic torque converter parameter integrated optimization design system is established based on tri-dimensional flow field theory. Design segments such as optimization initial values searching by meanline theory, cascade solid modeling, structure mesh of flow passage, CFD(computational fluid dynamics), DOE(design of experiment), RSM(response surface model)and optimization algorithm are integrated in this system and therefore a three dimensional optimization design method for hydrodynamic torque converter is presented and realized. An optimization design instance is accomplished by workstation computer cluster, and its result shows that speed and accuracy of design are improved and design system based on 3D flow field theory is accurate and effective.
Journal Article

Numerical Optimization on a Centrifugal Turbocharger Compressor

2008-06-23
2008-01-1697
Performances of a centrifugal turbocharger compressor are investigated and validated in this paper. Based on the validation results, numerical optimizations are performed using ANN and CFD methods. Different impeller geometry with free parameters controlling stacking laws, end-wall, blade sectional camber curves and corresponding performances are used as input layer of ANN in the optimization, while adiabatic total-to-total efficiency and total pressure ratio are used as output layer of the optimization cycle. With this method, the performances of the compressor investigated in this paper are improved notably.
Journal Article

A Methodology to Integrate a Nonlinear Shock Absorber Dynamics into a Vehicle Model for System Identification

2011-04-12
2011-01-0435
High fidelity mathematical vehicle models that can accurately capture the dynamics of car suspension system are critical in vehicle dynamics studies. System identification techniques can be employed to determine model type, order and parameters. Such techniques are well developed and usually used on linear models. Unfortunately, shock absorbers have nonlinear characteristics that are non-negligible, especially with regard the vehicle's vertical dynamics. In order to effectively employ system identification techniques on a vehicle, a nonlinear mathematical shock absorber model must be developed and then coupled to the linear vehicle model. Such an approach addresses the nonlinear nature of the shock absorber for system identification purposes. This paper presents an approach to integrate the nonlinear shock absorber model into the vehicle model for system identification.
Journal Article

Response Surface Generation for Kinematics and Injury Prediction in Pedestrian Impact Simulations

2013-04-08
2013-01-0216
This study concerns the generation of response surfaces for kinematics and injury prediction in pedestrian impact simulations using human body model. A 1000-case DOE (Design of Experiments) study with a Latin Hypercube sampling scheme is conducted using a finite element pedestrian human body model and a simplified parametric vehicle front-end model. The Kriging method is taken as the approach to construct global approximations to system behavior based on results calculated at various points in the design space. Using the response surface models, human lower limb kinematics and injuries, including impact posture, lateral bending angle, ligament elongation and bone fractures, can be quickly assessed when either the structural dimensions or the structural behavior of the vehicle front-end design change. This will aid in vehicle front-end design to enhance protection of pedestrian lower limbs.
Journal Article

Closed Loop Control Algorithm of Fuel Cell Output Power for a City Bus

2013-04-08
2013-01-0479
This paper studies a control algorithm for fuel cell/battery city buses. The output power of the fuel cell is controlled by a D.C. converter, and the output ports of the converter and the battery are connected in parallel to supply power for the electric motor. One way to prolong service life is to have the fuel cell system to deliver a steady-state power. However, because of fluctuations in the bus voltage and uncertainness in the D.C. converter, the output power of the fuel cell system changes drastically. A closed-loop control algorithm is necessary to eliminate the errors between the output and target power of the fuel cell system. The algorithm is composed of two parts, the feed forward one and the feedback one. Influences of the bus voltage and D.C. efficiency are compensated automatically in the feedback algorithm by using a PI algorithm. The stability and robustness of the algorithm is analyzed.
Journal Article

Combustion and Emission Characteristics of a Heavy-Duty Diesel Engine at Idle at Various Altitudes

2013-04-08
2013-01-1516
This present paper described an experimental study on the combustion and emission characteristics of a diesel engine at idle at different altitudes. Five altitudes ranging from 550m to up to 4500m were investigated. Combustion parameters including in-cylinder pressure and temperature, heat release, fuel mass burning and so forth, together with emission factors including CO, HC, NOx and PM were tested and analyzed. The result of on-board measurement manifested that in-cylinder pressure descended consistently with the rising of altitude, while both the maximum in-cylinder temperature and exhaust temperature ascended with the altitude. It was found that ignition delay was lengthened at higher altitude, but the combustion duration became shorter. The crank angle towards 90% fuel burnt has hardly changed with the variation of altitude. As for heat release, the difference of slopes observed at different altitudes was quite slight.
Journal Article

Investigation of Trailer Yaw Motion Control Using Active Front Steer and Differential Brake

2011-04-12
2011-01-0985
This paper presents a control system development for a yaw motion control of a vehicle-trailer combination using the integrated control of active front steer (AFS) and differential brake (DB). A 21 degree of freedom (dof) vehicle-trailer combination model that represents a large SUV and a medium one-axle trailer has been developed for this study. A model reference sliding mode controller (MRSMC) has been developed to generate the desired yaw moment. Based on the understanding of advantages and limitations of AFS and DB, a new integrated control algorithm was proposed. The simulation result shows that integrated control of AFS and DB can restrain the trailer's oscillation effectively and shows less longitudinal speed drop and higher stable margin compared to the DB activated only case while maintaining the yaw stability.
X