Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Random Variable Estimation and Model Calibration in the Presence of Epistemic and Aleatory Uncertainties

2018-04-03
2018-01-1105
This article presents strategies for evaluating the mean, variance, and failure probability of a response variable given measurements subject to both epistemic and aleatory uncertainties. We focus on a case in which standard sensor calibration techniques cannot be used to eliminate measurement error since the uncertainties affecting the metrology system depend upon the measurement itself (e.g., the sensor bias is not constant and the measurement noise is colored). To this end, we first characterize all possible realizations of the true response that might have led to each of such measurements. This process yields a surrogate of the data for the unobservable true response taking the form of a random variable. Each of these variables, called a Random Datum Model (RDM), is manufactured according to a measurement and to the underlying structure of the uncertainty.
Journal Article

A Fresh Look at Radiation Exposures from Major Solar Proton Events

2008-06-29
2008-01-2164
Solar proton events (SPEs) represent the single-most significant source of acute radiation exposure during space missions. Historically, an exponential in rigidity (particle momentum) fit has been used to express the SPE energy spectrum using GOES data up to 100 MeV. More recently, researchers have found that a Weibull fit better represents the energy spectrum up to 1000 MeV (1 GeV). In addition, the availability of SPE data extending up to several GeV has been incorporated in analyses to obtain a more complete and accurate energy spectrum representation. In this paper we discuss the major SPEs that have occurred over the past five solar cycles (~50+ years) in detail - in particular, Aug 1972 and Sept & Oct 1989 SPEs. Using a high-energy particle transport/dose code, radiation exposure estimates are presented for various thicknesses of aluminum. The effects on humans and spacecraft systems are also discussed in detail.
Journal Article

Lessons Learned from the Wide Field Camera 3 TV1 and TV2 Thermal Vacuum Test Campaigns

2008-06-29
2008-01-2038
The Wide Field Camera 3 (WFC3) instrument has undergone two complete thermal vacuum tests (TV1 and TV2), during which valuable lessons were learned regarding test configuration, test execution, model capabilities, and modeling practices. The very complex thermal design of WFC3 produced a number of challenging aspects to ground testing with numerous ThermoElectric Coolers and heat pipes, not all of which were functional. Lessons learned during TV1 resulted in significant upgrades to the model capabilities and a change in the test environment approach for TV2. These upgrades proved invaluable during TV2 when pre-test modeling assumptions proved to be false. Each of the lessons learned relate to one of two following broad statements: 1. Ensure the design can be tested and that the effect of non-flight like conditions is well understood, particularly with respect to non passive devices (TECs, Heat Pipes, etc) 2.
Technical Paper

A Summary of Reynolds Number Effects on Some Recent Tests in the Langley 0.3-Meter Transonic Cryogenic Tunnel

1986-10-01
861765
Reynolds number effects noted from selected test programs conducted in the Langiey 0.3-Meter Transonic Cryogenic Tunnel (0.3-m TCT) are discussed. The tests, which cover a unit Reynolds number range from about 2.0 to 80.0 million per foot, summarize effects of Reynolds number on: 1) aerodynamic data from a supercritical airfoil, 2) results from several wall interference correction techniques, and 3) results obtained from advanced, cryogenic test techniques. The test techniques include 1) use of a cryogenic sidewall boundary layer removal system, 2) detailed pressure and hot wire measurements to determine test section flow quality, and 3) use of a new hot film system suitable for transition detection in a cryogenic wind tunnel. The results indicate that Reynolds number effects appear most significant when boundary layer transition effects are present and at high lift conditions when boundary layer separation exists on both the model and the tunnel sidewall.
Technical Paper

Numerical Simulation of Propulsion-Induced Aerodynamic Characteristics on a Wing-Afterbody Configuration with Thrust Vectoring

1991-04-01
911174
Aerodynamic effects induced from vectoring an exhaust jet are investigated using a well established thin-layer Reynolds averaged Navier-Stokes code. This multiple block code has been modified to allow for the specification of jet properties at a block face. The applicability of the resulting code for thrust vectoring applications is verified by comparing numerically and experimentally determined pressure coefficient distributions for a jet-wing afterbody configuration with a thrust-vectoring 2-D nozzle. Induced effects on the body and nearby wing from thrust vectoring are graphically illustrated.
Technical Paper

Fiber Optic Cable Assemblies for Space Flight Applications: Issues and Remedies

1997-10-01
975592
The following is the first in a series of white papers which will be issued as a result of a task to define and qualify space grade fiber optic cable assemblies. Though to qualify and use a fiber optic cable in space requires treatment of the cable assembly as a system, it is very important to understand the design and behavior of its parts. These papers will address that need, providing information and “lessons learned” that are being collected in the process of procuring, testing and specifying the final assemblies. This installment covers information on optical fiber, coatings, cable components, design guidelines and limitations, radiation and reliability.
Technical Paper

New NASA Transport Research Facilities to Support Research Flight Operations in Present and Future ATC Environments

1997-10-13
975641
The NASA Langley Research Center is developing a set of Transport Research Facilities which will support a simulation-to-flight process that will improve the efficiency of conducting experiments from concept development, to ground-based simulation testing, to flight testing. A key facility is a modified B-757-200 airplane containing an onboard research system. This aircraft is replacing the existing NASA B-737-100 Transport Systems Research Vehicle. The other Transport Research Facilities include two simulator cabs, a Research System Integration Laboratory, and the associated software. These facilities will support research flight operations associated with the present and future air traffic control environments.
Technical Paper

Application of Temperature Sensitive Paint Technology to Boundary Layer Analysis

1997-10-01
975536
Temperature Sensitive Paint (TSP) technology coupled with the Reynolds number capability of modern wind tunnel test facilities produces data required for continuing development of turbulence models, stability codes, and high performance aerodynamic design. Data in this report include: the variation in transition location with Reynolds number in the boundary layer of a two-dimensional high speed natural laminar flow airfoil (HSNLF) model; additional bypass mechanisms present, such as surface roughness elements; and, shock-boundary layer interaction. Because of the early onset of turbulent flow due to surface roughness elements present in testing, it was found that elements from all these data were necessary for a complete analysis of the boundary layer for the HSNLF model.
Technical Paper

The CEV Smart Buyer Team Effort: A Summary of the Crew Module & Service Module Thermal Design Architecture

2007-07-09
2007-01-3046
The NASA-wide CEV Smart Buyer Team (SBT) was assembled in January 2006 and was tasked with the development of a NASA in-house design for the CEV Crew Module (CM), Service Module (SM), and Launch Abort System (LAS). This effort drew upon over 250 engineers from all of the 10 NASA Centers. In 6 weeks, this in-house design was developed. The Thermal Systems Team was responsible for the definition of the active and passive design architecture. The SBT effort for Thermal Systems can be best characterized as a design architecting activity. Proof-of-concepts were assessed through system-level trade studies and analyses using simplified modeling. This nimble design approach permitted definition of a point design and assessing its design robustness in a timely fashion. This paper will describe the architecting process and present trade studies and proposed thermal designs
Technical Paper

Weathering of Thermal Control Coatings

2007-07-09
2007-01-3020
Spacecraft radiators reject heat to their surroundings. Radiators can be deployable or mounted on the body of the spacecraft. NASA's Crew Exploration Vehicle is to use body mounted radiators. Coatings play an important role in heat rejection. The coatings provide the radiator surface with the desired optical properties of low solar absorptance and high infrared emittance. These specialized surfaces are applied to the radiator panel in a number of ways, including conventional spraying, plasma spraying, or as an appliqué. Not specifically designed for a weathering environment, little is known about the durability of conventional paints, coatings, and appliqués upon exposure to weathering and subsequent exposure to solar wind and ultraviolet radiation exposure. In addition to maintaining their desired optical properties, the coatings must also continue to adhere to the underlying radiator panel.
Technical Paper

Thermal Model Correlation for Mars Reconnaissance Orbiter

2007-07-09
2007-01-3243
The Mars Reconnaissance Orbiter (MRO) launched on August 12, 2005 and began aerobraking at Mars in March 2006. In order to save propellant, MRO used aerobraking to modify the initial orbit at Mars. The spacecraft passed through the atmosphere briefly on each orbit; during each pass the spacecraft was slowed by atmospheric drag, thus lowering the orbit apoapsis. The largest area on the spacecraft, most affected by aeroheating, was the solar arrays. A thermal analysis of the solar arrays was conducted at NASA Langley Research Center to simulate their performance throughout the entire roughly 6-month period of aerobraking. A companion paper describes the development of this thermal model. This model has been correlated against many sets of flight data. Several maneuvers were performed during the cruise to Mars, such as thruster calibrations, which involve large abrupt changes in the spacecraft orientation relative to the sun.
Technical Paper

Thermal Modeling of the Mars Reconnaissance Orbiter 's Solar Panel and Instruments During Aerobraking

2007-07-09
2007-01-3244
The Mars Reconnaissance Orbiter (MRO) launched on August 12, 2005 and started aerobraking at Mars in March 2006. During the spacecraft's design phase, thermal models of the solar panels and instruments were developed to determine which components would be the most limiting thermally during aerobraking. Having determined the most limiting components, (from a temperature limit standpoint), thermal limits in terms of heat rate were established. Advanced thermal modeling techniques were developed utilizing Thermal Desktop and Patran Thermal. Heat transfer coefficients were calculated using a Direct Simulation Monte Carlo technique. Analysis established that the solar panels were the most limiting components during the aerobraking phase of the mission.
Technical Paper

Validation Studies of the GRNTRN Code for Radiation Transport

2007-07-09
2007-01-3118
To meet the challenge of future deep space programs an accurate and efficient engineering code for analyzing the shielding requirements against high-energy galactic heavy radiations is needed. Such engineering design codes require establishing validation processes using laboratory ion beams and space flight measurements in realistic geometries. In consequence, a new version of the HZETRN code capable of simulating HZE ions with either laboratory or space boundary conditions is currently under development. The new code, GRNTRN, is based on a Green's function approach to the solution of Boltzmann's transport equation and like its predecessor is deterministic in nature. Code validation in the laboratory environment is addressed by showing that GRNTRN accurately predicts energy loss spectra as measured by solid-state detectors in ion beam experiments.
Technical Paper

Numerical Uncertainty Quantification for Radiation Analysis Tools

2007-07-09
2007-01-3110
Recently a new emphasis has been placed on engineering applications of space radiation analyses and thus a systematic effort of Verification, Validation and Uncertainty Quantification (VV&UQ) of the tools commonly used for radiation analysis for vehicle design and mission planning has begun. There are two sources of uncertainty in geometric discretization addressed in this paper that need to be quantified in order to understand the total uncertainty in estimating space radiation exposures. One source of uncertainty is in ray tracing, as the number of rays increase the associated uncertainty decreases, but the computational expense increases. Thus, a cost benefit analysis optimizing computational time versus uncertainty is needed and is addressed in this paper. The second source of uncertainty results from the interpolation over the dose vs. depth curves that is needed to determine the radiation exposure.
Technical Paper

Thermal Assessment of Swift Instrument Module Thermal Control System during First 2.5 Years in Flight

2007-07-09
2007-01-3083
On Day 97, 2005, a temperature excursion of the Burst Alert Telescope (BAT) loop heat pipe (LHP) #1 compensation chamber (CC) caused this LHP shut down. It had no impact on the Gamma Ray Burst (GRB) detection because LHP #0 was nominal. After LHP #1 was started up and its primary heat controller was disabled on Day 98, both LHPs have been nominal. On Day 337, 2004, the X-Ray Telescope (XRT) thermo-electric cooler (TEC) power supply (PS) suffered a single point failure. The charge-coupled device (CCD) has been cooled by the radiator passively to -50°C or colder most of the time. The CCD temperature meets the main objective of pinpointing GRB afterglow positions. With these anomalies overcome, the Instrument Module (IM) thermal control system (TCS) is nominal during the first 2.5 years in flight.
Technical Paper

A Simplified Orbit Analysis Program for Spacecraft Thermal Design

1997-07-01
972540
This paper presents a simplified orbit analysis program developed to calculate orbital parameters for the thermal analysis of spacecraft and space-flight instruments. The program calculates orbit data for inclined and sunsynchronous earth orbits. Traditional orbit analyses require extensive knowledge of orbital mechanics to produce a simplified set of data for thermal engineers. This program was created to perform orbital analyses with minimal input and provides the necessary output for thermal analysis codes. Engineers will find the program to be a valuable analysis tool for fast and simple orbit calculations. A description of the program inputs and outputs is included. An overview of orbital mechanics for inclined and Sun-synchronous orbits is also presented. Finally, several sample cases are presented to illustrate the thermal analysis applications of the program.
Technical Paper

Thermal Design And Performance Of The Space Support Equipment For The Hubble Space Telescope Second Servicing Mission

1997-07-01
972527
New Space Support Equipment (SSE) components developed for the Hubble Space Telescope Second Servicing Mission are described, with particular emphasis on how flight experience from the 1993 First Servicing Mission was utilized in the design and testing process. The new components include the Second Axial Carrier (SAC) Axial Scientific Instrument Protective Enclosure (ASIPE), the magnetic-damped SAC ASIPE Load Isolation System, the Enhanced Power Distribution and Switching Unit (EPDSU), and the Multi-Mission Orbital Replacement Unit Protective Enclosure (MOPE). Analytical modeling predictions are compared with on-orbit data from the Hubble Space Telescope (HST) Second Servicing Mission. Those involved in thermal designs of hardware for use on the Shuttle or Space Station, particularly with astronaut interaction, may find interest in this paper.
Technical Paper

Ground Tests of Capillary Pumped Loop (CAPL 3) Flight Experiment

1998-07-13
981812
The success of CAPL 2 flight experiment has stirred many interests in using capillary pumped loop (CPL) devices for spacecraft thermal control. With only one evaporator in the loop, CAPL 2 was considered a point design for the Earth Observing System (EOS-AM). To realize the full benefits of CPLs, a reliable system with multiple evaporators must be developed and successfully demonstrated in space. The Capillary Pumped Loop (CAPL 3) Flight Experiment was designed to flight demonstrate a multiple evaporator CPL in a space environment. New hardware and concepts were developed for CAPL 3 to enable reliable start-up, constant conductance operation, and heat load sharing. A rigorous ground test program was developed and extensive characterization tests were conducted. All performance requirements were met, and the loop demonstrated very reliable operation.
Technical Paper

Development of Race Car Testing at the Langley Full-Scale Tunnel

1998-11-16
983040
This paper reviews the development of a new test capability for race cars at the Langley Full-Scale Tunnel. The existing external force balance of the Langley Full-Scale Tunnel, designed for use with full-scale aircraft, was reconfigured for automobile testing. Details of structural modifications relevant to supporting cars and force measurements are shown. A specialized automobile force balance, measuring vehicle drag and individual wheel downforce, was then designed, constructed and calibrated. The design was governed by simplicity and low cost and was tailored to the stock car racing community. The balance became fully operational in early 1998. The overall layout of the automobile balance and comparisons to reference data from another full-scale wind tunnel is presented.
Technical Paper

Near-Real-Time Satellite Cloud Products for Icing Detection and Aviation Weather over the USA

2003-06-16
2003-01-2097
A set of physically based retrieval algorithms has been developed to derive from multispectral satellite imagery a variety of cloud properties that can be used to diagnose icing conditions when upper-level clouds are absent. The algorithms are being applied in near-real time to the Geostationary Operational Environmental Satellite (GOES) data over Florida, the Southern Great Plains, and the midwestern USA. The products are available in image and digital formats on the world-wide web. The analysis system is being upgraded to analyze GOES data over the CONUS. Validation, 24-hour processing, and operational issues are discussed.
X