Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Development of the Combustion System for a Flexible Fuel Turbocharged Direct Injection Engine

2010-04-12
2010-01-0585
Gasoline turbocharged direct injection (GTDI) engines, such as EcoBoost™ from Ford, are becoming established as a high value technology solution to improve passenger car and light truck fuel economy. Due to their high specific performance and excellent low-speed torque, improved fuel economy can be realized due to downsizing and downspeeding without sacrificing performance and driveability while meeting the most stringent future emissions standards with an inexpensive three-way catalyst. A logical and synergistic extension of the EcoBoost™ strategy is the use of E85 (approximately 85% ethanol and 15% gasoline) for knock mitigation. Direct injection of E85 is very effective in suppressing knock due to ethanol's high heat of vaporization - which increases the charge cooling benefit of direct injection - and inherently high octane rating. As a result, higher boost levels can be achieved while maintaining optimal combustion phasing giving high thermal efficiency.
Journal Article

A Study on Operation Fluid Consumption for Heavy Duty Diesel Engine Application using both, EGR and SCR

2013-09-24
2013-01-2474
This paper describes a method for optimization of engine settings in view of best total cost of operation fluids. Under specific legal NOX tailpipe emissions requirements the engine out NOX can be matched to the current achievable SCR NOX conversion efficiency. In view of a heavy duty long haul truck application various specific engine operation modes are defined. A heavy duty diesel engine was calibrated for all operation modes in an engine test cell. The characteristics of engine operation are demonstrated in different transient test cycles. Optimum engine operation mode (EOM) selection strategies between individual engine operation modes are discussed in view of legal test cycles and real world driving cycles which have been derived from on-road tests.
Technical Paper

Estimation of Diesel Soot Particles in Exhaust Gas Emission and Its Accumulation in Diesel Particulate Filter Using Graphical Calculation Model

2021-09-22
2021-26-0195
To avoid frequent regeneration intervals leading to expeditious ageing of the catalyst and substantial fuel penalty for the owner, it is always desired to estimate the soot coming from diesel exhaust emission, the soot accumulated and burnt in the Diesel Particulate Filter (DPF). Certain applications and vehicle duty cycles cannot make use of the differential pressure sensor for estimating the soot loading in the DPF because of the limitations of the sensor tolerance and measurement accuracy. The physical soot model is always active and hence a precise and more accurate model is preferred to calibrate & optimize the regeneration interval. This paper presents the approach to estimate the engine-out soot and the accumulated soot in the DPF using a graphical calculation tool (AVL Concerto CalcGraf™).
Journal Article

Combustion Characteristics of a 3000 Bar Diesel Fuel System on a Single Cylinder Research Engine

2015-09-29
2015-01-2798
Modern diesel systems have come to rely on fuel systems with the capacity for high injection pressures. The benefits of such high pressures include improved tolerance for EGR, reduced emissions and improved performance. Current production fuel systems have typical capacities to 2500 bar, when a decade ago 1800 bar was a typical limit. Following the trend, this paper investigates the effect of rail pressures up to 3000 bar on a 1.5L single cylinder research engine. The injector nozzles tested include two variations in flow rate, the number of holes, and spray cone angle. In addition to fuel rail pressure, the effects of intake swirl, excess-air ratio, EGR, and injection timing are evaluated at speed and load points representative of A100, B100, and C100 test conditions of the U.S. EPA on-highway 13 Mode test cycle.
Journal Article

High Performance Cooling and EGR Systems as a Contribution to Meeting Future Emission Standards

2008-04-14
2008-01-1199
In relation to further tightening of the emissions legislation for on-road heavy duty Diesel engines, the future potential of cooled exhaust gas recirculation (EGR) as a result of developments in the cooling systems of such engines has been evaluated. Four basic engine concepts were investigated: an engine with SCR exhaust gas aftertreatment for control of the nitrogen oxides (NOx), an engine with cooled EGR and particulate (PM) filtration, an engine with low pressure EGR and PM filtration and an engine with two stage low temperature cooled EGR also with a particulate filter. A 10.5 litre engine was calibrated and tested under conditions representative for each concept, such that 1.7 g/kWh (1.3 g/bhp-hr) NOx could be achieved over the ESC and ETC. This corresponds to emissions 15% below the Euro 5 legislation level.
Journal Article

Compact Engine Architecture for Best Fuel Efficiency and High Performance - Challenge or Contradiction

2011-11-08
2011-32-0595
The world of automotive engineering shows a clear direction for upcoming development trends. Stringent fleet average fuel consumption targets and CO2 penalties as well as rising fuel prices and the consumer demand to lower operating costs increases the engineering efforts to optimize fuel economy. Passenger car engines have the benefit of higher degree of technology which can be utilized to reach the challenging targets. Variable valve timing, downsizing and turbo charging, direct gasoline injection, highly sophisticated operating strategies and even more electrification are already common technologies in the automotive industry but can not be directly carried over into a motorcycle application. The major differences like very small packaging space, higher rated speeds, higher power density in combination with lower production numbers and product costs do not allow implementation such high of degree of advanced technology into small-engine applications.
Journal Article

Maneuver-Based Battery-in-the-Loop Testing - Bringing Reality to Lab

2013-04-08
2013-01-0157
The increasing numbers of hybrid electric and full electric vehicle models currently in the market or in the pipeline of automotive OEMs require creative testing mechanisms to drive down development costs and optimize the efficiency of these vehicles. In this paper, such a testing mechanism that has been successfully implemented at the US Environmental Protection Agency National Vehicle and Fuel Emissions Laboratory (EPA NVFEL) is described. In this testing scheme, the units-under-test consist of a battery pack and its associated battery management system (BMS). The remaining subsystems, components, and environment of the vehicle are virtual and modeled in high fidelity.
Journal Article

A Thermodynamic Model for a Single Cylinder Engine with Its Intake/Exhaust Systems Simulating a Turbo-Charged V8 Diesel Engine

2011-04-12
2011-01-1149
In this paper, a thermodynamic model is discussed for a single cylinder diesel engine with its intake and exhaust systems simulating a turbo-charged V8 diesel engine. Following criteria are used in determination of the gas exchange systems of the single cylinder engine (SCE): 1) the level of pressure fluctuations in the intake and exhaust systems should be within the lower and upper bounds of those simulated by the thermodynamic model for the V8 engine and patterns of the pressure waves should be similar; 2) the intake and exhaust flows should be reasonably close to those of the V8 engine; 3) the cylinder pressures during the combustion and gas exchange should be reasonably close to those of the V8 engine under the same conditions for the valve timing, fuel injection, rate of heat release and in-cylinder heat transfer. The thermodynamic model for the SCE is developed using the 1D engine thermodynamic simulation tool AVL BOOST.
Journal Article

Effects of Fuel Octane Rating and Ethanol Content on Knock, Fuel Economy, and CO2 for a Turbocharged DI Engine

2014-04-01
2014-01-1228
Engine dynamometer testing was performed comparing fuels having different octane ratings and ethanol content in a Ford 3.5L direct injection turbocharged (EcoBoost) engine at three compression ratios (CRs). The fuels included midlevel ethanol “splash blend” and “octane-matched blend” fuels, E10-98RON (U.S. premium), and E85-108RON. For the splash blends, denatured ethanol was added to E10-91RON, which resulted in E20-96RON and E30-101 RON. For the octane-matched blends, gasoline blendstocks were formulated to maintain constant RON and MON for E10, E20, and E30. The match blend E20-91RON and E30-91RON showed no knock benefit compared to the baseline E10-91RON fuel. However, the splash blend E20-96RON and E10-98RON enabled 11.9:1 CR with similar knock performance to E10-91RON at 10:1 CR. The splash blend E30-101RON enabled 13:1 CR with better knock performance than E10-91RON at 10:1 CR. As expected, E85-108RON exhibited dramatically better knock performance than E30-101RON.
Journal Article

A Metal Fibrous Filter for Diesel Hybrid Vehicles

2011-04-12
2011-01-0604
Trends towards lower vehicle fuel consumption and smaller environmental impact will increase the share of Diesel hybrids and Diesel Range Extended Vehicles (REV). Because of the Diesel engine presence and the ever tightening soot particle emissions, these vehicles will still require soot particle emissions control systems. Ceramic wall-flow monoliths are currently the key players in the Diesel Particulate Filter (DPF) market, offering certain advantages compared to other DPF technologies such as the metal based DPFs. The latter had, in the past, issues with respect to filtration efficiency, available filtration area and, sometimes, their manufacturing cost, the latter factor making them less attractive for most of the conventional Diesel engine powered vehicles. Nevertheless, metal substrate DPFs may find a better position in vehicles like Diesel hybrids and REVs in which high instant power consumption is readily offered enabling electrical filter regeneration.
Journal Article

Measures to Reduce Particulate Emissions from Gasoline DI engines

2011-04-12
2011-01-1219
Particulate emission reduction has long been a challenge for diesel engines as the diesel diffusion combustion process can generate high levels of soot which is one of the main constituents of particulate matter. Gasoline engines use a pre-mixed combustion process which produces negligible levels of soot, so particulate emissions have not been an issue for gasoline engines, particularly with modern port fuel injected (PFI) engines which provide excellent mixture quality. Future European and US emissions standards will include more stringent particulate limits for gasoline engines to protect against increases in airborne particulate levels due to the more widespread use of gasoline direct injection (GDI). While GDI engines are typically more efficient than PFI engines, they emit higher particulate levels, but still meet the current particulate standards.
Journal Article

Effect of Heat of Vaporization, Chemical Octane, and Sensitivity on Knock Limit for Ethanol - Gasoline Blends

2012-04-16
2012-01-1277
Ethanol and other high heat of vaporization (HoV) fuels result in substantial cooling of the fresh charge, especially in direct injection (DI) engines. The effect of charge cooling combined with the inherent high chemical octane of ethanol make it a very knock resistant fuel. Currently, the knock resistance of a fuel is characterized by the Research Octane Number (RON) and the Motor Octane Number (MON). However, the RON and MON tests use carburetion for fuel metering and thus likely do not replicate the effect of charge cooling for DI engines. The operating conditions of the RON and MON tests also do not replicate the very retarded combustion phasing encountered with modern boosted DI engines operating at low-speed high-load. In this study, the knock resistance of a matrix of ethanol-gasoline blends was determined in a state-of-the-art single cylinder engine equipped with three separate fuel systems: upstream, pre-vaporized fuel injection (UFI); port fuel injection (PFI); and DI.
Technical Paper

HD Base Engine Development to Meet Future Emission and Power Density Challenges of a DDI™ Engine

2007-10-30
2007-01-4225
This paper describes development challenges for Heavy-Duty (HD) on-highway Diesel Direct Injection (DDI™) engines to meet the extremely advanced US-EPA 2010 (later named US 2010) emission limits while further increasing power density in combination with competitive engine efficiency. It discusses technologies and solutions for lowest engine-out emissions in combination with most competitive fuel consumption values and excellent dynamic behavior. To achieve these challenging targets, base engine hardware requirements are described. In detail the development of EGR systems, especially the challenges of running high EGR rates over the whole engine speed range also at high load, the dynamic EGR control for transient engine operation to achieve lowest NOx emissions at the smoke limit with excellent load response is discussed. Also the effect of the turbo-machinery on power density and transient engine behavior is shown.
Technical Paper

The Role of Fuel Cells in Commercial Vehicles

2007-10-30
2007-01-4273
Fuel Cells (FC) are promising candidates to reduce energy consumption and, hence, to improve the global climate situation due to significant gains in the process efficiencies. Whereas the development of fuel cells for passenger car applications has intensified during the last years, commercial vehicle applications have not been in the focus of developers so far. A reason for that is the limited availability of fuels such as hydrogen. Commercial vehicles are in the most cases operated with diesel fuel. AVL has developed three fuel cell applications for commercial vehicles operated with diesel fuel.
Technical Paper

Objective Evaluation of Vehicle Driveability

1998-02-23
980204
Vehicle driveability evolves more and more as a key decisive factor for marketability and competitiveness of passenger cars, since the final decision of customers to buy a car is usually taken after a more or less intensive test drive. Car manufacturers currently evaluate vehicle driveability with subjective assessments and by having their experienced test drivers fill out form sheets. These assessments are time and cost intensive, limited in repeatability and not objective. The real customer requirements cannot be recognized in detail with this method. This paper describes a completely new approach for an objective and real time evaluation of relevant driveability criteria, for use in a vehicle and on a high dynamic test bed. The vehicle application enables an objective comparison between vehicles and an application as a development tool in many development and calibration phases, where ever fast and objective driveability results are required.
Technical Paper

Gasoline DI Engines: The Complete System Approach By Interaction of Advanced Development Tools

1998-02-23
980492
Gasoline direct injection is one of the main issues of actual worldwide SI engine development activities. It requires a comprehensive system approach from the basic considerations on optimum combustion system configuration up to vehicle performance and driveability. The general characteristics of currently favored combustion system configurations are discussed in this paper regarding both engine operation and design aspects. The engine performance, especially power output and emission potential of AVL's DGI engine concept is presented including the interaction of advanced tools like optical diagnostics and 3D-CFD simulation in the combustion system development process. The application of methods like tomographic combustion analysis for investigations in the multicylinder engine within further stages of development is demonstrated. The system layout and operational strategies for fuel economy in conjunction with exhaust gas aftertreatment requirements are discussed.
Technical Paper

Dimethyl Ether as Fuel for CI Engines - A New Technology and its Environmental Potential

1998-02-23
981158
Dimethyl Ether has been proposed as alternative fuel for combustion engines. The paper gives a brief overview of resources, production, distribution and use of different automotive fuels and compares Dimethyl Ether with other oxygenated synthetic fuels recently proposed. For use in combustion engines Dimethyl Ether requires the introduction of new technologies, mainly in the field of fuel injection systems for direct injection. Such a fuel injection system is described in detail and measured characteristics are shown. For assessment of Dimethyl Ether from the environmental point of view, efficiencies and emissions during production and use of different fuels are summarized and discussed. For evaluation of environmental impacts a method is introduced which compares technical processes with natural cycles of substances and thus determines their “sustainability”.
Technical Paper

Sound - Design for Motorcycles Influence of Different Parameters on the Sound

2006-11-13
2006-32-0084
Beside performance, handling and styling the sound characteristic of a motorcycle is a very important feature for the acceptance of the product by the customers and therefore the commercial success of a new product. Creating a special brand sound becomes more and more important to create a product that can be easily distinguished from competitor products and is therefore considered to be something special. On the other hand the legal limits in terms of pass - by noise allow for a very little margin for the creation of a special sound. During the product sound design phase the different perceptions of the rider wearing a helmet and pedestrians have to be considered. In passenger cars sound design has been known for a long time and the creation of a special sound for the driver inside the passenger compartment can be achieved with little influence on the exterior noise and therefore on the noise which is limited by legislation.
Technical Paper

Ethanol Direct Injection on Turbocharged SI Engines - Potential and Challenges

2007-04-16
2007-01-1408
In the past application of alternative fuels was mostly concentrated to special markets - e.g. for ethanol and ethanol blends Brazil or Sweden. Now an increasing sensitivity towards dependency on crude oil significantly enhances the interest in alternative fuels. With spark ignited engines, ethanol and gasoline / ethanol blends are the most promising alternative fuels - besides CNG. The high octane number of ethanol and the resulting excellent knock performance gives significant benefits, especially with highly boosted engines. However, the evaporation characteristics of ethanol result in challenges regarding cold start and oil dilution with GDI application. This paper deals with investigations on a turbocharged DI engine operated on ethanol fuel in order to improve challenges of ethanol fuel, such as oil dilution and cold start. Cold start can be improved by injecting fuel late in the compression stroke (high pressure start) based on a refined engine design and operation strategies.
Technical Paper

OBD of De-NOx-Systems - Requirements for Software Development and Calibration for 2010 and Beyond

2008-04-14
2008-01-1322
Worldwide OBD legislation has and will be tightened drastically. In the US, OBD II for PC and the introduction of HD OBD for HD vehicles in 2010 will be the next steps. Further challenges have come up with the introduction of active exhaust gas aftertreatment components to meet the lower future emission standards, especially with the implementation of combined DPF-De-NOx-systems for PC and HD engines. Following such an increase in complexity, more comprehensive algorithms and software have to be developed to cope with the legislative requirements for exhaust gas aftertreatment devices. The calibration has to assure the proper functionality of OBD under all driving situations and ambient conditions. The increased complexity can only be mastered when new and efficient tools and methodologies are applied for both algorithm design and calibration. Consequently, OBD requirements have to be taken into account right from the start of engine development.
X