Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Studying Local Conditions in a Heavy-Duty Diesel Engine by Creating Phi-T Maps

2011-04-12
2011-01-0819
New measurements have been done in order to obtain information concerning the effect of EGR and a paraffinic hydrotreated fuel for the smoke and NO emissions of a heavy-duty diesel engine. Measured smoke number and NO emissions are explained using detailed chemical kinetic calculations and CFD simulations. The local conditions in the research engine are analyzed by creating equivalence ratio - temperature (Phi-T) maps and analyzing the CFD results within these maps. The study uses different amount of EGR and two different diesel fuels; standard EN590 diesel fuel and a paraffinic hydrotreated vegetable oil (HVO). The detailed chemical kinetic calculations take into account the different EGR rates and the properties of the fuels. The residence time in the kinetical calculations is used to explain sooting combustion behavior within diesel combustion. It was observed that NO emission trends can be well captured with the Phi-T maps but the situation is more difficult with the engine smoke.
Technical Paper

Emission Reduction Potential with Paraffinic Renewable Diesel by Optimizing Engine Settings or Using Oxygenate

2012-09-10
2012-01-1590
Over the past decade significant research and development activities have been invested in alternative fuels in order to reduce our dependency on fossil fuel sources and reduce CO₂ and local emissions from traffic. One result of these R&D efforts is paraffinic diesel fuels, which can be used with existing vehicle fleets and infrastructures. Paraffinic diesels also have other benefits compared to conventional diesels, for example, a very high cetane number and the lack of sulfur and aromatic compounds. These characteristics are beneficial in terms of exhaust gas emissions, something which has been demonstrated in numerous studies. The objective of this study was to develop low-emission combustion technologies for paraffinic renewable diesel in a compression ignition engine, and to study the possible benefits of oxygenated paraffinic diesel.
Technical Paper

Pre-ignition Behavior of Gasoline Blends in a Single- Cylinder Engine with Varying Boost Pressure and Compression Ratio

2023-09-29
2023-32-0120
Pre-ignition in a boosted spark-ignition engine can be triggered by several mechanisms, including oil-fuel droplets, deposits, overheated engine components and gas-phase autoignition of the fuel-air mixture. A high pre-ignition resistance of the fuel used mitigates the risk of engine damage, since pre-ignition can evolve into super-knock. This paper presents the pre-ignition propensities of 11 RON 89-100+ gasoline fuel blends in a single-cylinder research engine. Albeit the addition of two high-octane components (methanol and reformate) to a toluene primary reference fuel improved the pre-ignition resistance, one high-RON fuel experienced runaway pre-ignition at relatively low boost pressure levels. A comparison of RON 96 blends showed that the fuel composition can affect pre-ignition resistance at constant RON.
X