Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Simulation Diagnostics Approach for Identification, Ranking and Optimization of Electric Motor Design Parameters for Optimal NVH Performance

2021-08-31
2021-01-1079
With increasing efforts towards rapid electrification of powertrains, NVH engineers face new set of challenges. Elimination of the IC engines drastically reduces powertrain borne noise levels but unmasks other existing noises like wind, road, ancillary devices, and squeak & rattle. In addition, the new tonal sounds from electro-mechanical drive systems makes the noise more annoying even though it is lesser quantitatively. In summary, the electrification of powertrains has shifted powertrain NVH development from overall level to sound quality with different targets requiring several electro-mechanical solutions with innovative simulation, testing, and optimization approaches. The purpose of the paper is to present an approach to detect, quantify, and optimize the structure-borne radiated noise of an electric motor due to electromagnetic forces or maxwell pressure exerted by magnetic effects in electric motor.
Journal Article

Design of a 5.9 GHz High Directivity Planar Antenna Using Topology Optimization for V2V Applications

2017-03-28
2017-01-1691
A low profile high directivity antenna is designed to operate at 5.9 GHz for Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communications to ensure connectivity in different propagation channels. Patch antennas are still an ongoing topic of interest due to their advantages: low profile, low cost, and ease of fabrication. One disadvantage of the patch antenna is low directivity which results in low range performance. In this paper, we introduce an efficient and novel way to improve the directivity of patch antenna using topology optimization and design of experiments (DoE). Numerical simulations are done using Method of Moments (MoM) technique in the commercially available tool, FEKO. We use global response surface method (GRSM) for double objectives topology optimization. Numerical results show a promising use of topology optimization and DoE techniques for the systematic design of high directivity of low profile single element patch antennas.
Technical Paper

Optimization Process for Off-road Vehicle Shock Absorbers

2008-04-14
2008-01-1150
The purpose of this paper is to demonstrate a process to automatically modify and optimize a damping curve for a specific road input. Off road race vehicles are required to maintain high speeds over difficult terrain. This requires large wheel displacements, and shocks tuned to properly damp wheels motions using available wheel travel. Selection of proper damping values allows full use of available suspension travel while minimizing loads and accelerations experienced by the vehicle and driver. Using Altair's MotionView and HyperStudy, a process is demonstrated where a damping curve can be modified based on specific constraints and performance criteria. A full vehicle MotionView model of a generic off-road race car will be simulated driving over a large obstacle. Using optimization techniques within HyperStudy, the characteristics of the damping curve will be modified so that pitch displacement and vertical accelerations on the vehicle and driver are minimized.
Technical Paper

Topology Driven Design of Under-Hood Automotive Components for Optimal Weight and NVH Attributes

2019-04-02
2019-01-0834
Weight is a major factor during the development of Automotive Powertrains due to stringent fuel economy requirements. Light weighting constitutes a challenge to the engineering community when trying to deliver quieter powertrains. For this reason, the NVH (Noise Vibration Harshness) CAE engineers are adopting advanced vibro-acoustic simulation methods combined with topology optimization methods to drive the design of the under hood components for Noise Vibration and Harshness. Vibro-acoustic computational methods can be complex and require significant computation effort. Computation of Equivalent Radiated Power (referred to as ERP) is a simplified method to assess maximum dynamic radiation of components for specific excitations in frequency response analysis which in turn affects radiated sound. Topology Optimization is a mathematical technique used to find the best material distribution for structural systems in order to deliver a specific objective under clearly defined constraints.
Technical Paper

Design of Electric Motor Using Coupled Electromagnetic and Structural Analysis and Optimization

2019-04-02
2019-01-0937
Today, vehicle architectures are changing continuously due to the need for increasing vehicle electrification. Electric motors have helped sustain this requirement. Traditional internal combustion engines are being replaced or coupled with traction motors or in-wheel motor systems in full-electric or hybrid-electric vehicles. With the use of electric motor in a vehicle, the number of parts can be reduced. This leads to reduced packaging size and complexity. Also, CO2 emissions are reduced, and overall efficiency is increased. But the task of designing an electric motor which is assembled in a vehicle could be quite complex. The design of an electric motor can affect the durability, and noise and vibration characteristic of the vehicle structure to which it is connected. The design of the vehicle structure to which the motor attaches should be able to sustain the magnetic torque generated by the motor.
Technical Paper

Optimization Driven Methodology to Improve the Body-in-White Structural Performance

2019-01-09
2019-26-0205
To evaluate the performance of Body-in-white design different attributes needs to be evaluated at various design levels. The current paper focus on evaluation and improvement of Body in white structure in detailed design stage of product development by identifying common performance contributors with multiple model inputs and design validation plans to achieve global performance of the structure. This paper explains the methodology to evaluate the results of Initial Analysis and design iterations for multiple Design verification plans individually and also combined. Sensitivity study is carried out by Multi model DOE (Design of experiments) optimization method to identify the global performance effecting contributors for each design validation plan. The methodology could generate a design which improve stiffness on local joinery sections and also global structural stiffness parameters in both static and dynamic condition by keeping the overall mass in acceptable range.
Technical Paper

CAE Performance Prediction Using Machine Learning Model Based On Historical Data

2021-09-22
2021-26-0401
Machine Learning applications are developed to disrupt product design methodology across all industries. Every design engineer would like to optimize his design at the concept stage only considering a few critical and essential load cases. The major challenge for the design engineer has not much simulation expertise required to prepare the CAE model, apply material properties, load case, solve and post-process to understand the CAE performance. Even, when the engineer has CAE expertise, it will take a considerable amount of time to prepare the CAE model, solve and post-process it.
X