Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Analysis of Power-Split HEV Control Strategies Using Data from Several Vehicles

2007-04-16
2007-01-0291
As part of an ongoing vehicle benchmarking effort at Argonne National Laboratory, four different power-split HEVs were tested on a chassis dynamometer to analyze their operational behavior and understand the control strategy and its relationship to the individual features of the vehicles tested. The controls that select the way in which engine operation matches best engine efficiency load points appears to have evolved From the Gen 1 to the Gen 2 Toyota Prius. The Ford Escape HEV and Lexus RX400h were also analyzed by using similar methods, although the data are not as extensive as those for the Prius hybrids. Whereas the Escape HEV appeared to operate in a manner similar to that of the Gen 1 Prius, the RX400h (with its relatively large engine) loads the engine with excess battery charge to keep it operating at higher power levels - apparently to improve overall efficiency.
Technical Paper

Investigating Possible Fuel Economy Bias Due To Regenerative Braking in Testing HEVs on 2WD and 4WD Chassis Dynamometers

2005-04-11
2005-01-0685
Procedures are in place for testing emissions and fuel economy for virtually every type of light-duty vehicle with a single-axle chassis dynamometer, which is why nearly all emissions test facilities use single-axle dynamometers. However, hybrid electric vehicles (HEVs) employ regenerative braking. Thus, the braking split between the driven and non-driven axles may interact with the calculation of overall efficiency of the vehicle. This paper investigates the regenerative braking systems of a few production HEVs and provides an analysis of their differences in single-axle (2WD) and double-axle (4WD) dynamometer drive modes. The fuel economy results from 2WD and 4WD operation are shown for varied cycles for the 2000 Honda Insight, 2001 Toyota Prius, and the 2004 Toyota Prius. The paper shows that there is no evidence that a bias in testing an HEV exists because of the difference in operating the same hybrid vehicle in the 2WD and 4WD modes.
Journal Article

On-Road Validation of a Simplified Model for Estimating Real-World Fuel Economy

2017-03-28
2017-01-0892
On-road fuel economy is known to vary significantly between individual trips in real-world driving conditions. This work introduces a methodology for rapidly simulating a specific vehicle’s fuel economy over the wide range of real-world conditions experienced across the country. On-road test data collected using a highly instrumented vehicle is used to refine and validate this modeling approach. Model accuracy relative to on-road data collection is relevant to the estimation of “off-cycle credits” that compensate for real-world fuel economy benefits that are not observed during certification testing on a chassis dynamometer.
X