Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Experimental Investigation of Low Cost, Low Thermal Conductivity Thermal Barrier Coating on HCCI Combustion, Efficiency, and Emissions

2020-04-14
2020-01-1140
In-cylinder surface temperature is of heightened importance for Homogeneous Charge Compression Ignition (HCCI) combustion since the combustion mechanism is thermo-kinetically driven. Thermal Barrier Coatings (TBCs) selectively manipulate the in-cylinder surface temperature, providing an avenue for improving thermal and combustion efficiency. A surface temperature swing during combustion/expansion reduces heat transfer losses, leading to more complete combustion and reduced emissions. At the same time, achieving a highly dynamic response sidesteps preheating of charge during intake and eliminates the volumetric efficiency penalty. The magnitude and temporal profile of the dynamic surface temperature swing is affected by the TBC material properties, thickness, morphology, engine speed, and heat flux from the combustion process. This study follows prior work of authors with Yttria Stabilized Zirconia, which systematically engineered coatings for HCCI combustion.
Technical Paper

Reliability and Life Study of Hydraulic Solenoid Valve - Part 2 - Experimental Study

2009-04-20
2009-01-0413
The current work studies the reliability of a solenoid valve (SV) used in automobile transmissions through a joint theoretical and experimental approach. The goal of this work is to use accelerated tests to characterize SV failure and correlate the results to new comprehensive finite element models (Part 1). A custom test apparatus has been designed and built to simultaneously monitor and actuate up to four SVs. The test apparatus is capable of applying a controlled duty cycle, current and actuation frequency. The SVs are also placed in a thermal chamber so that the ambient temperature can be controlled precisely. The apparatus measures in real-time the temperature, current, and voltage of each SV. A series of tests have been conducted to produce repeated failures of the SV. The failure of the SV appears to be caused by overheating and failure of the insulation used in the solenoid coil.
X