Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Experimental Methods of Capturing Events during Crash Loading of Plastics Components

2008-04-14
2008-01-1122
In this study the surface of the bodies being impacted against each other are treated with special speckled paints. A stereophotogrammetric system employing two high speed cameras tracks x,y,z coordinate values during impact. The data is then converted to transient local deformation vectors and strain tensors of the local area on the plastics component being impacted. The camera can also capture displacement vectors of an impactor, a guided or free-flight projectile. Various measurement signals on the projectile and parts are fed into signal processors. These raw data are then processed by a software, specially developed by BASF, for various output data that can be correlated with the corresponding output from the CAE (Computer Aided Engineering) simulations, such as energy during crash processes, real time history of stress and strain on the plastic components.
Technical Paper

Extending Catalyst Useful Life through Advanced Catalytic Materials and Flow Dynamics

2010-09-28
2010-32-0038
Exhaust catalyst deactivation in small, handheld, 2-stroke engines is an issue that is faced quite frequently in efforts to improve or maintain catalyst performance but reduce cost. Fresh catalyst performance is rarely an issue, however, sustaining this performance for the specified useful life period of 50, 125, or 300 hours is where challenges start to arise. Our program goal was to develop and demonstrate a commercially viable catalyst which is capable of meeting regulatory and internal requirements with a deterioration factor (DF) near or below 1.0 over a 300 hour useful life period. A secondary objective was to utilize decreased quantities of platinum group metals (PGM) to reduce the cost relative to our reference catalyst. To achieve this, our focus was to reduce poisoning caused by exhaust byproducts and exhaust borne contaminants through a collaboration of catalyst advances and exhaust system design.
Technical Paper

Microcellular Polyurethane (MCU) for NVH Solutions

2011-05-17
2011-01-1621
While the microcellular urethane is widely known in the automotive industry for its use in jounce bumpers, its use in Noise Vibration Harshness (NVH) applications is often not as well recognized. Even though there are some NVH parts in the market, rubber still dominates it. The objective of this paper is to demonstrate the material properties of MCU and their relevance for NVH applications in chassis and suspension components. It will also demonstrate the importance of package design to suit the use of the MCU material. This is especially important to not only achieve the best performance but also keep overall cost and weight under control. Several application types will be introduced with general design suggestions. A detailed design guideline for these applications is not part of this paper. Each application has a large variety of parameters to be considered in the design. They need to be selectively applied based on customer performance targets.
Technical Paper

Effect of Thermal Stability of Detergents and Carrier Fluids on the Formation of Combustion Chamber Deposits

1996-05-01
961097
The effect of engine operating conditions on the formation of combustion chamber deposits has been studied by varying the driving cycle used in a series of vehicle tests aimed at measuring the CCD formation tendencies of different multifunctional fuel detergent additives. It was found that at higher engine temperatures it is not possible to easily differentiate the performance of different additives and that low load and low speed conditions should be chosen when testing additives for CCD control. The data obtained suggest that there is a direct correlation between the decomposition temperature of additive components as measured by thermogravimetric analysis (TGA) and their CCD formation tendencies. Of the various carrier fluids surveyed, materials based on alkyl oxides seem to perform the best in controlling CCD formation.
Technical Paper

Low CO2, Ultralow NOx Heavy Duty Diesel Engine: Experimental Results

2022-03-29
2022-01-0426
This paper presents experimental results of a 10.6L, three-cylinder opposed-piston (OP) operating on diesel fuel designed for heavy duty (Class 8) operation. The paper will describe the engine configuration and calibration of both catalyst light-off and high efficiency modes. Analysis based on measured results show the engine can comply with all 2027 California Air Resourced Board (CARB) and Environmental Protection Agency (EPA) requirements for CO2 and criteria emissions. Due to the ability of the OP Engine to combine low oxides of nitrogen (NOX) flux with high exhaust enthalpy for early catalyst light off, the engine can meet all 2027 CARB and EPA NOX standards with a current, state of the art conventional underfloor aftertreatment system. No additional emissions control technology is required.
Technical Paper

ASTM Unwashed Gum and the Propensity of a Fuel to Form Combustion Chamber Deposits

2000-06-19
2000-01-2026
An investigative group set up under the auspices of the CEC (Coordinating European Council) collected data on combustion chamber deposits (CCD), ASTM unwashed gum (UWG) results and the thermogravimetric analysis (TGA) of these gums for different fuels from many different sources. The analysis of this data shows that UWG cannot and does not predict CCD. It is not possible to use UWG or any aspect of its behaviour in the TGA to assess the CCD-forming tendency of randomly chosen fuels.
Technical Paper

Combustion Chamber Deposits and Their Evaluation by a European Performance Test

2000-06-19
2000-01-2023
Deposits on engine parts, and in particular in combustion chambers of modern engines are causing increasing concern in the automobile industry. Highly sophisticated engine management systems make effects on emissions or performance obvious as outgassing of unburned hydrocarbons or variation of spark advance. Reduced mean heat flux away from the cylinder influences engine thermodynamics. Extreme deposits may cause noise increase by carbon rap. A special form of combustion chamber deposits, well known under the synonym spark plug fouling, is a carbon needle on spark plugs, which can cause the total damage of the catalysts (Japanese Industrial Standard D 1606: Adaptability Test Code of Spark Plug for Automobiles) The Co-ordinating European Council for the development of performance tests for transportation fuels, lubricants, and other fluids (CEC) started the development of a new performance test in 1994.
Technical Paper

Zone Length Optimization to Improve PGM Utility

2014-04-01
2014-01-1508
“Zoning” a catalytic converter involves placing higher concentrations of platinum group metals (PGM) in the inlet portion of the substrate. This is done to optimize the cost-to-performance tradeoff by increasing the reaction rate at lower temperatures while minimizing PGM usage. A potentially useful application of catalyst zoning is to improve performance using a constant PGM mass. A study was performed to assess what the optimum ratio of front to rear palladium zone length is to achieve the highest performance in vehicle emission testing. Varying the zone ratio from 1:1 to 1:9 shows a clear hydrocarbon performance optimum at a 1:5.66 (15%/85%) split. This performance optimum shows as both a minimum in FTP75 non-methane organic gas (NMOG) emissions as well as a minimum in hydrocarbon, carbon monoxide, and nitrogen oxide light-off temperature. Overall, an improvement of 18%, or 11 mg/mi of combined NMOG+NOx emissions was obtained without using additional PGM.
Journal Article

Cold-Start WHTC and WHSC Testing Results on Multi-Cylinder Opposed-Piston Engine Demonstrating Low CO2 Emissions while Meeting BS-VI Emissions and Enabling Aftertreatment Downsizing

2019-01-09
2019-26-0029
Reducing the greenhouse emissions from on-road freight vehicles to meet the climate change mitigation objectives, has become a prime focus of regulatory authorities all over the world. Besides India, the United States, the European Union, Canada, Japan, and China have already established or planned heavy-duty vehicle efficiency regulations addressing CO2 and NOX emissions. In addition, Argentina, Brazil, Mexico, and South Korea are all in various stages of developing policies to improve the efficiency of their commercial vehicle fleets. For CO2 emissions reduction standards, the U.S. mandates 27% reduction by 2027, EU is calling for 15% reduction by 2025, China for 27% by 2019 over 2012 levels, and India is mandating 10%-15% reduction by 2021 for phase 2 of the new standard. There has also been considerable focus on further reduction in NOX emissions from current levels (0.2 g/hp-hr), to the proposed ultra-low NOx standards (0.02 g/hp-hr) in the U.S. for heavy duty engines by 2024.
Technical Paper

Development of an Intake Valve Deposit Test with a GM LE9 2.4L Engine

2021-09-21
2021-01-1186
The U.S. Environmental Protection Agency (EPA) certifies gasoline deposit control additives for intake valve deposit (IVD) control utilizing ASTM D5500, a vehicle test using a1985 BMW 318i. Concerns with the age of the test fleet, its relevance in the market today, and the availability of replacement parts led the American Chemistry Council’s (ACC) Fuel Additive Task Group (FATG) to begin a program to develop a replacement. General Motors suggested using a 2.4L LE9 test engine mounted on a dynamometer and committed to support the engine until 2030. Southwest Research Institute (SwRI®) was contracted to run the development program in four Phases. In Phase I, the engine test stand was configured, and a test fuel selected. In Phase II, a series of tests were run to identify a cycle that would build an acceptable level of deposits on un-additized fuel. In Phase III, the resultant test cycle was examined for repeatability.
X