Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

A Detailed Chemistry Simulation of the SI-HCCI Transition

2010-04-12
2010-01-0574
A Stochastic Reactor Model (SRM) has been used to simulate the transition from Spark Ignition (SI) mode to Homogeneous Charge Compression Ignition (HCCI) mode in a four cylinder in-line four-stroke naturally aspirated direct injection SI engine with cam profile switching. The SRM is coupled with GT-Power, a one-dimensional engine simulation tool used for modelling engine breathing during the open valve portion of the engine cycle, enabling multi-cycle simulations. The model is initially calibrated in both modes using steady state data from SI and HCCI operation. The mode change is achieved by switching the cam profiles and phasing, resulting in a Negative Valve Overlap (NVO), opening the throttle, advancing the spark timing and reducing the fuel mass as well as utilising a pilot injection. Experimental data is presented along with the simulation results.
Technical Paper

A New Instrument for Diesel Particulate Filter Functional Tests in Development and Quality Control Applications

2010-04-12
2010-01-0809
A new Diesel Particulate Generator (DPG) has been developed and commercialized for the automated testing of full-size, light duty Diesel Particulate Filters (DPFs). The system was optimized for filter development testing with a wide parameter range of relevant functional tests, and quality assurance testing where repeatability and rapid testing is important. A carefully designed Diesel-fuelled burner is combined with blowers to produce flows, temperatures and particulate matter (PM) that are representative of Diesel engines. The burner operates with continuous combustion of a Diesel fuel spray, with three-stage introduction of controlled airflows. Variation of these flows allows control of particulate generation independently of total gas flow and temperature (over a temperature and flow range). The system can generate stable PM at more than 20 g/h, or operate without PM formation so permitting preheating of a test filter.
Technical Paper

A Fast Detailed-Chemistry Modelling Approach for Simulating the SI-HCCI Transition

2010-04-12
2010-01-1241
An established Stochastic Reactor Model (SRM) is used to simulate the transition from Spark Ignition (SI) to Homogeneous Charge Compression Ignition (HCCI) combustion mode in a four-cylinder in-line four-stroke naturally aspirated direct injection SI engine with cam profile switching. The SRM is coupled with GT-Power, a one-dimensional engine simulation tool used for modeling engine breathing during the open valve portion of the engine cycle, enabling multi-cycle simulations. The mode change is achieved by switching the cam profiles and phasing, resulting in a Negative Valve Overlap (NVO), opening the throttle, advancing the spark timing and reducing the fuel mass as well as using a pilot injection. A proven technique for tabulating the model is used to create look-up tables in both SI and HCCI modes. In HCCI mode several tables are required, including tables for the first NVO, transient valve timing NVO, transient valve timing HCCI and steady valve timing HCCI and NVO.
Technical Paper

Experimental Assessment of Turbocharged Diesel Engine Transient Emissions during Acceleration, Load Change and Starting

2010-04-12
2010-01-1287
The control of transient emissions from turbocharged diesel engines remains an important objective to manufacturers, since newly produced engines must meet the stringent criteria concerning exhaust emissions levels as dictated by the legislated Transient Cycles. In the present work, experimental tests are conducted on a medium-duty, turbocharged and after-cooled diesel engine in order to investigate the behavior and formation mechanism of nitric oxide (NO), smoke and combustion noise emissions under various transient operating schedules including acceleration, load change and starting. To this aim, a fully instrumented test bed was set up in order to record and research key engine and turbocharger variables during the transient events. The main parameters measured were nitric oxide concentration and smoke opacity (both using ultra-fast response analyzers) as well as combustion noise.
X