Refine Your Search

Topic

Search Results

Viewing 1 to 16 of 16
Video

Toyota Plug-In Hybrid (PHV) Demonstration Program Results

2012-03-27
From 2009 until present Toyota has had a demonstration program of Prius PHV which is comprised of 600 vehicles throughout Japan, Europe and in the US. The vehicles were given to government agencies, corporations, utility companies and private individuals to use. With these demo units Toyota wanted to understand the market reaction and real world impact of plug-in technology on gasoline displacement with increased use of electricity as a fuel. This presentation shows that approximately 50% of fuel was saved using the PHVs in the US. An experiment in Toyota City shows that if public infrastructure is optimized to be convenient and located where people normally park, there is a potential to achieve an ideal fuel savings of 61%. The demonstration program shows that plug-in technology in fact saves fuel and that the proper infrastructure can optimize the fuel savings of plug-in hybrids. Presenter Avernethy Francisco, Toyota
Video

Some Aspects of Toyota PHEV Prius OBD

2012-02-01
Plug-in Hybrid Electric Vehicles (PHEVs) are entering the market and bring with them new OBD issues. A key one is how to measure in-use monitor performance ratio and where to set a standard for this, as PHEVs will have varying amounts of engine-on operation depending on customer plug-in and driving behavior. Toyota�s Prius PHEV system is described and customer use data from a US demonstration fleet is examined. Some prior denominator proposals by Toyota and CARB are explained, as background for the current CARB/industry agreement for denominator and ratio. Presenter Morton M. Smith, Toyota
Technical Paper

Real-world Evaluation of National Energy Efficiency Potential of Cold Storage Evaporator Technology in the Context of Engine Start-Stop Systems

2020-04-14
2020-01-1252
National concerns over energy consumption and emissions from the transportation sector have prompted regulatory agencies to implement aggressive fuel economy targets for light-duty vehicles through the U.S. National Highway Traffic Safety Administration/Environmental Protection Agency (EPA) Corporate Average Fuel Economy (CAFE) program. Automotive manufacturers have responded by bringing competitive technologies to market that maximize efficiency while meeting or exceeding consumer performance and comfort expectations. In a collaborative effort among Toyota Motor Corporation, Argonne National Laboratory (ANL), and the National Renewable Energy Laboratory (NREL), the real-world savings of one such technology is evaluated. A commercially available Toyota Highlander equipped with two-phase cold storage technology was tested at ANL’s chassis dynamometer testing facility.
Journal Article

Ash Permeability Determination in the Diesel Particulate Filter from Ultra-High Resolution 3D X-Ray Imaging and Image-Based Direct Numerical Simulations

2017-03-28
2017-01-0927
Diesel engine exhaust aftertreatment components, especially the diesel particulate filter (DPF), are subject to various modes of degradation over their lifetimes. One particular adverse effect on the DPF is the significant rise in pressure drop due to the accumulation of engine lubricant-derived ash which coats the inlet channel walls effectively decreasing the permeability of the filter. The decreased permeability due to ash in the DPF can result in increased filter pressure drop and decreased fuel economy. A unique two-step approach, consisting of experimental measurements and direct numerical simulations using ultra-high resolution 3D imaging data, has been utilized in this study to better understand the effects of ash accumulation on engine aftertreatment component functionality.
Technical Paper

Developing Safety Standards for FCVs and Hydrogen Vehicles

2007-04-16
2007-01-0436
The SAE FCV Safety Working Group has been addressing fuel cell vehicle (FCV) safety for over 7 years. The initial document, SAE J2578, was published in 2002. SAE J2578 has been valuable to the FCV development with regard to the identification of hazards and the definition of countermeasures to mitigate these hazards such that FCVs can be operated in the same manner as conventional gasoline IC-powered vehicles. The document is currently being updated to clarify and update requirements so that the document will continue to be relevant and useful in the future. In addition to developing draft revisions to SAE J2578, the working group has updated SAE J1766 and is developing a new recommended practice on vehicular hydrogen systems (SAE J2579). The documents are written from the standpoint of systems-level, performance-based requirements. A risk-based approach was used to identify potential electrical and fuel system hazards and provide criteria for acceptance.
Technical Paper

Vehicle Integration For US EPA 2010 Emissions and Lowest Cost of Ownership

2010-10-05
2010-01-1956
This paper presents an overview of the process Cummins uses to integrate the engine and aftertreatment systems with the vehicle. This is a system integration process which assembles various subsystems such as the engine, aftertreatment, drivetrain, electronics, and cooling systems into one vehicular end product. It requires close collaboration with vehicle manufacturers and their suppliers. Given the wide range of vehicle types and applications, a robust process is needed. A synopsis of this vehicle integration process is included.
Technical Paper

The Impact of Fuel Composition on the Combustion and Emissions of a Prototype Lean-Boosted PFI Engine

2010-10-25
2010-01-2094
Toyota and BP have performed a collaborative study to understand the impact of fuel composition on the combustion and emissions of a prototype 1.8L lean boosted engine. The fuel matrix was designed to understand better the impact of a range of fuel properties on fundamental combustion characteristics including thermal efficiency, combustion duration, exhaust emissions and extension of lean limit. Most of the fuels in the test matrix were in the RON range of 96 - 102, although ethanol and other high octane components were used in some fuels to increase RON to the range 104 - 108. The oxygen content ranged from 2 - 28%, and constituents included biocomponents, combustion improving additives and novel blend components. Performance and emissions tests were conducted over a range of engine operating conditions. Thermal efficiency was mapped at stoichiometric and lean conditions, and the limit of lean combustion was established for different fuels.
Technical Paper

Rapid Boundary Detection for Model Based Diesel Engine Calibration

2011-04-12
2011-01-0741
In recent years, engine control systems have become more and more complex because of the growing pressure to develop technical innovations due to social pressures such as global warming and the depletion of fossil fuels. On the other hand, products must be launched on the market in a timely manner and at low cost. For these reasons, calibration processes have become more sophisticated. It is possible to improve the efficiency of calibration by making good use of models, and a calibration process that incorporates models is called model based calibration (MBC). MBC is a valid means of reducing the number of measurement points to some extent by statistical engine modeling and design of experiment (DoE) methodology which places measurement points in order to maximize modeling accuracy. However, it is still necessary to spend much time carrying out boundary detection testing before DoE.
Technical Paper

Vehicle NVH Prediction Technique for Engine Downsizing

2011-05-17
2011-01-1565
As fuel prices continue to be unstable the drive towards more fuel efficient powertrains is increasing. For engine original equipment manufacturers (OEMs) this means engine downsizing coupled with alternative forms of power to create hybrid systems. Understanding the effect of engine downsizing on vehicle interior NVH is critical in the development of such systems. The objective of this work was to develop a vehicle model that could be used with analytical engine mount force data to predict the vehicle interior noise and vibration response. The approach used was based on the assumption that the largest contributor to interior noise and vibration below 200 Hz is dominated by engine mount forces. An experimental transfer path analysis on a Dodge Ram 2500 equipped with a Cummins ISB 6.7L engine was used to create the vehicle model. The vehicle model consisted of the engine mount forces and vehicle paths that define the interior noise and vibration.
Technical Paper

Development of a S-FLOW System and Control (S‑FLOW: Energy Saving Air Flow Control System)

2013-04-08
2013-01-1499
This paper focuses on the development of the centralized air flow system S-FLOW (Energy Saving Air Flow Control System). The S-FLOW system directs thermal energy to each seating position in the vehicle based on occupancy, thus prioritizing the energy usage based on the particular scenario. The thermal environment in a vehicle's cabin is non-uniform. If the climate control system is used to direct airflow exclusively to any one region of the cabin, without special considerations, comfort may be adversely impacted. To solve this concern, a non-uniform evaluation method was developed to evaluate comfort at each body region of the occupant using the SET* (Standard new effective temperature) method. SET* is a parameter that combines the effects of temperature, airflow velocity, humidity, and other parameters to quantify thermal comfort. Next, a method was established that correlated each body region's SET* value to the occupant's overall thermal comfort.
Technical Paper

Development of Aluminum-Clad Material for Corrosion Resistance Cooler

2013-04-08
2013-01-0380
As greater emphasis is placed on the development of small fuel-efficient cars, there is a growing need to reduce the size of the inverter used in hybrid vehicles (HVs). However, semiconductor devices and other components are generating larger amounts of heat and the parts used to cool these components are becoming thinner. One issue resulting from these trends is perforations that propagate from coolant paths. This development secured corrosion resistance by controlling sacrificial corrosion protection performance, optimizing the use of Mn and Si materials to reduce susceptibility to grain-boundary corrosion, and taking a microstructural approach to the flow of the brazing filler metal. The developed material was applied to the inverter cooler of a small HV released at the end of 2011.
Technical Paper

Nonlinear System Identification of Variable Oil Pump for Model-Based Controls and Diagnostics

2021-04-06
2021-01-0392
This paper presents nonlinear system identification of a variable oil pump for model-based controls and diagnostics of advanced internal combustion engines. The variable oil pump offers great benefits over the conventional fixed displacement oil pump in terms of fuel efficiency and functional optimality. However, to fully benefit from the variable oil pump, an accurate mathematical model that describes its dynamic behavior is foundational to develop an accurate and robust oil pressure control and diagnostic. Toward this end, Hammerstein and Wiener models that consist of a nonlinear static block followed by a linear dynamic block and a linear dynamic block followed by a nonlinear static block, respectively are developed. Under different operating conditions (oil temperature and engine speed), the oil pressure (output) is measured with the multilevel duty cycle (input) of the flow control valve.
Technical Paper

Requirements and Strategies for Diesel Cold-Start Catalyst Warmup for Low NOx Regulations

2021-04-06
2021-01-0537
This paper describes a systematic, physics-based approach in deriving engine performance requirements for a Diesel cold-start catalyst warmup strategy that would satisfy low NOx regulations. These requirements are valid for both conventional and hybrid vehicles. The requirements are driven by an understanding of catalyst and engine behavior. The paper defines a metric that can be used to design and evaluate the performance of technologies, controls and calibration strategies. Optimization strategies based on this metric are proposed. Some examples of the optimization are highlighted.
Technical Paper

Oil Flow in Piston Oil Ring Groove

2014-04-01
2014-01-1670
The oil flow in the oil ring groove was observed in order to improve the oil ejection efficiency in the oil ring groove. The oil flow was visualized with a clear head piston using fluorescing agent and particles under motoring condition. The influences of oil ring specification on the direction and the velocity of the oil flow were evaluated. The velocity of the oil ring with oil vent holes was faster than that of the oil ring without oil vent holes. In the case of the oil ring with vent holes, the reverse flow of the oil toward the front side was observed in the back clearance. Therefore, oil vent holes can change the oil flow and improve the oil ejection efficiency in the oil ring groove.
Technical Paper

Dynamic Response Evaluation of a Chassis of a Generator Set Using FEA techniques

2019-01-09
2019-26-0198
A Generator set is comprised of mainly an Engine, Alternator and Chassis. High Horse-Power Generator development is challenging, with lots of complexities in physical and virtual validations. Creating high fidelity analytical model is always beneficial and economical at the design stages as it avoids repetitive tests on various design concepts. This paper reports analytical methods of developing an FEA model of a Generator for locomotive application and its correlation with Test. Highlighted as well are some of the challenges faced in FE modeling of a large Generator model (60 liters engine capacity) with node count of around 4 million. In this technique, Modal Analysis is first performed to capture the dynamic behavior. More than 95 % correlation is achieved between the FEA and test natural frequencies (Bending modes). Harmonic Analysis with Modal Superposition is then applied to understand the dynamic response of a Chassis under the action of engine vibratory loads.
Technical Paper

Security Requirements for Vehicle Security Gateways

2024-04-09
2024-01-2806
The NMFTA’s Vehicle Cybersecurity Requirements Woking Group (VCRWG), comprised of fleets, OEMs and cybersecurity experts, has worked the past few years to produce security requirements for Vehicle Network Gateways. Vehicle Network Gateways play an important role in vehicle cybersecurity – they are the component responsible for assuring vehicle network operations in the presence of untrustworthy devices on the aftermarket or diagnostics connectors. This paper offers security requirements for these gateways in design, implementation and operation. The requirements are specified at levels of abstraction applicable to all vehicle networks down to CAN networks specifically. These requirements were captured using the https://github.com/strictdoc-project/strictdoc requirements management tool and will be made available also as a ReqIF format along with the paper at https://github.com/nmfta-repo/vcr-experiment.
X