Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

The Cummins Signature 600 Heavy-Duty Diesel Engine

1998-02-23
981035
Design and development of the Cummins Signature 600, a new high horsepower dual overhead cam truck diesel engine, has been completed. The Signature 600 product system includes an all-new engine, controls, fuel system, and business information systems. During product definition, particular emphasis was placed on target markets, customer input to design, engineering and manufacturing processes, concurrent engineering and extensive mechanical and thermal analyses. Cummins Signature 600 fulfills the needs of Owner-Operator and Premium Fleet linehaul trucking businesses.
Technical Paper

Electronic Systems Integration: The Engine Manufacturer's Perspective

1996-10-01
962179
The increased use of on-board and off-board electronic systems with medium duty and heavy duty trucks and buses presents challenges with compatibility and proper integration. The vehicle architecture is taking shape to establish three areas of computer control-the powertrain, the cab instrument panel, and the cab operations center. The critical element of pursuing proper integration of these systems requires established and clear standards and test methods. Clear roles and responsibilities, a defined system architecture and common test methods are required between subsystem electronic product suppliers and vehicle manufacturers. The electronics integration challenges are presented in the context of the U.S. medium duty and heavy duty automotive industry but have broad applicability to other heavy vehicles and markets worldwide. SAE and ISO forums are needed to address these issues.
Technical Paper

Cummins VTA-1710 800 HP Engine

1968-02-01
680602
The VTA-1710 series engine described represents Cummins' entry in the 800 hp class engine. This paper presents a general description of all design modifications that were made to achieve a 15% increase in power in the same package size with a conservatively loaded basic structure. Design changes to the engine are carried throughout the engine horsepower range of existing rating of 500, 635, and 700 hp to achieve a standardized family concept with a high degree of interchangeability.
Technical Paper

Cummins Technical Center

1969-02-01
690779
This paper presents the design philosophy and the technical capabilities of a new technical center built by Cummins Engine Co. The center was built primarily for development of diesel and similar engines, but also has broad capability for development of a variety of advanced power systems. The facility includes 88 instrumented test cells for testing power units up to 2000 hp under a complete range of environmental and special test conditions. Additional research laboratories support development activity and perform advanced studies in analytical techniques, materials development, and basic engine mechanisms.
Technical Paper

Tribological Investigations for an Insulated Diesel Engine

1983-02-01
830319
A Minimum Cooled Engine (MCE) has been successfully run for 250 hours at rated condition of 298 kW and 1900 rpm. This engine was all metallic without any coolant in the block and lower part of the heads. Ring/liner/lubricant system and thermal loading on the liner at top ring reversal (TRR) as well as on the piston are presented and discussed. Ring/liner wear is given as well as oil consumption and blow-by data during the endurance run. Another engine build with a different top ring coating and several lubricants suggested that a 1500 hours endurance run of MCE is achievable. Rig test data for screening ring materials and synthetic lubricants necessary for a successful operation of a so-called Adiabatic Engine with the ring/ceramic liner (SiN) interface temperature up to 650°C are presented and discussed.
Technical Paper

Reduced Durability due to a Friction Modifier in Heavy Duty Diesel Lubricants

1985-04-01
851260
RAPID CORROSIVE WEAR OF COPPER ALLOYS caused by a friction reducing additive was encountered in field tests of experimental lubricants. This oil soluble molybdenum, sulphur, and phosphorous containing additive subsequently was used in several commercial heavy duty diesel lubricants although the additive manufacturer did not recommend it for such applications. Numerous engine failures occurred due to the aggressiveness of this additive toward copper. Standard laboratory engine test methods or standard bench test methods did not predict the severe field problem. A new laboratory engine test method has been shown to duplicate the field failures. Bench test methods to duplicate the field failures are discussed. The mode of failure is shown and described.
Technical Paper

Collection and Characterization of Particulate and Gaseous-Phase Hydrocarbons in Diesel Exhaust Modified by Ceramic Particulate Traps

1987-02-01
870254
Protocols for sampling and analysis of particulate and gaseous-phase diesel emissions were developed to characterize the chemical and biological effects of using ceramic traps as particulate control devices. A stainless-steel sampler was designed, constructed, and tested with XAD-2 sorbent for the collection of volatile organic compounds (VOC). Raw exhaust levels of TPM and SOF and mutagenicity of the SOF and VOC were all reduced when the traps were used. Hydrocarbon mass balances indicated that some hydrocarbons were not collected by the sampling system and that the proportions of collected SOF and VOC were altered by the use of the traps. SOF hydrocarbons appeared to be derived mainly from engine lubricating oil; VOC hydrocarbons were apparently fuel-derived. There was no apparent effect on SOF mutagenicity due to either sampling time or reexposure of particulate to exhaust gases.
Technical Paper

Lube Oil Filtration Effect on Diesel Engine Wear

1971-02-01
710813
A series of comparative evaluation tests to determine the effect of various full-flow and combination full-flow and bypass filter systems on diesel engine piston ring and crankshaft bearings was made using radioactive tracer wear measurement and component weight loss techniques. The results of these tests indicate that bypass lube oil filtration combined with good full-flow lube oil filtration result in lowest engine wear rate and lowest total cost for the engine user.
X