Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

A Durable In-Line Hydrocarbon Adsorber for Reduced Cold Start Exhaust Emissions

1997-10-01
972843
A new adsorber system for reducing cold start HC emissions has been developed that offers a passive and simplified alternative to previous HC adsorber technologies. The series flow in-line adsorber concept combines existing catalyst technology with a zeolite based HC adsorber by simply incorporating one additional adsorber catalyst substrate into conventional catalytic converters without any valving, purging lines or special substrates. The HC adsorber catalyst consist of a durable zeolite, a washcoat binder, precious group metals and rare earth promoters on standard monolithic substrates. For selected vehicle applications, a single converter containing a light off catalyst, a catalyzed HC adsorber and a standard three-way catalyst can be used in the underfloor position. Even after severe engine aging, the vehicle FTP results show that this new technology remains effective in reducing the cold start HC emissions while providing good CO and NOx conversions.
Technical Paper

Evaluation of High Cell Density Substrates for Advanced Catalytic Converter Emissions Control

1999-10-25
1999-01-3630
Advances in extrusion die technology allow ceramic substrate suppliers to provide new monolithic automotive substrates with considerably higher cell densities and thinner wall thicknesses. These new substrates offer both faster light off and better steady state efficiencies providing new flexibility in the design of automotive catalytic converters. The effectiveness-NTU methodology is used to evaluate various design parameters of the HCD substrates. Various theoretical derivations are supported with experimental results on substrates with cell densities ranging from 400 to 1200 cells per square inch with varying wall thicknesses. Performance effects such as steady state conversion, transient response both thermal and emission, flow restriction and FTP emissions results are evaluated. Poison deposition is studied and the effects on emissions performance evaluated.
X