Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

An Assessment of the Effects of Passenger Vehicle Weight and Size on Accident and Fatality Risk Based on Data for 1991 through 2007 Model Year Vehicles

2013-04-08
2013-01-0757
Quantifying the independent effects of vehicle weight and size on overall vehicle safety is necessary in order to assess the risks and benefits of vehicle weight reduction. This paper describes the results of one-stage and two-stage logistic regression analyses of the effects of passenger vehicle weight, wheelbase, track, and footprint on fatalities per accident, accidents per exposure (e.g., vehicle-miles-traveled), and fatalities per exposure using national and multi-state traffic accident and exposure databases. The analyses were accomplished in two phases. The first phase used 1995 though 2000 calendar year data for 1991 through 1999 model year vehicles. The second phase used 2002 through 2008 calendar year data for 2000 through 2007 model year vehicles.
Journal Article

Passenger Vehicle-Motorcycle Pre-Crash Trajectory Reconstruction and Conflict Analysis Results Based on an Extended Application of the Honda-DRI ACAT Safety Impact Methodology

2018-04-03
2018-01-0510
Advanced Crash Avoidance Technologies (ACATs) such as Forward Collision Warning (FCW) and Automatic Emergency Braking (AEB) have been developed for light passenger vehicles (LPVs) to avoid and mitigate collisions with other road users and objects. However, the number of motorcycle (MC) crashes, injuries, and fatalities in the United States has remained relatively constant. To fully realize potential safety benefits, advanced driver assistance systems and future automated vehicle technologies also need to be effective in avoiding collisions with motorcycles. Toward this goal the Honda-DRI ACAT Safety Impact Methodology (SIM), which was previously developed to evaluate LPV ACAT system effectiveness in avoiding and mitigating collisions with fixed objects, other LPVs, and pedestrians, is being extended to also evaluate the effectiveness of ACATs in avoiding and mitigating LPV-MC collisions.
Technical Paper

Correlation of Zwicker's Loudness and Other Noise Metrics with Drivers' Over-the-Road Transient Noise Discomfort

1998-02-23
980585
Results of a study are described in which driver subjective over-the-road noise discomfort ratings and objective measurements were collected and correlated for 10 driver subjects and an experimental matrix of test vehicles, transient road specimens, and repeated runs. Objective noise measurements included various time varying psychoacoustic Loudness and Sharpness metrics and Sound Pressure Level measurements. Results indicate that driver over-the-road noise discomfort is most strongly correlated with changes in the sound magnitude, for which Fast A-weighted SPL is almost as good a metric as Zwicker's Loudness, and to some extent is also correlated with the absolute sound level. Results also suggest that the change in the Aures' Sharpness of the sound and passenger car motion and vibration may also contribute to noise discomfort.
Technical Paper

A Metric To Quantify Attentional Workload In Dual Task Driving Conditions

2017-03-28
2017-01-1376
A class of driver attentional workload metrics has been developed for possible application to the measuring and monitoring of attentional workload and level of distraction in actual driving, as well as in the evaluation and comparison of in-vehicle human machine interface (HMI or DVI) devices. The metrics include driver/vehicle response and performance measures, driver control activity, and driver control models and parameters. They are the result of a multidisciplinary, experimental and analytical effort, applying control theory, manual control, and human factors principles and practices. Driving simulator and over-the-road experiments were used to develop, confirm, and demonstrate the use of the metrics in distracted driving situations. The visual-manual secondary tasks used in the study included navigation destination entry, radio tuning, critical tracking task, and a generic touch screen entry task.
Technical Paper

Development of a Prototype Safety Analysis System to Assess and Forecast Vehicle Safety

2006-04-03
2006-01-0718
A prototype safety analysis system has been developed to assess and forecast vehicle safety that can assist vehicle developers integrate various safety technologies into future production vehicles. The prototype system can be used to assess the actual safety in existing vehicles based on fatal accident and vehicle registration data (e.g., US FARS and Polk data); and to estimate the safety in future vehicles based on the estimated effectiveness of candidate passive and active safety technologies (e.g., Curtain Airbags, CMBS) using a systems model with a representative sample of in-depth accident data (e.g., NASS/CDS). Therefore, the prototype system is a useful tool which can be used to estimate the net overall effectiveness of various candidate safety technologies combined, providing a metric which can be used to help optimize the effectiveness of integrated vehicle safety systems.
Journal Article

Evaluation of Injury Risks and Benefits of a Crush Protection Device (CPD) for All-Terrain Vehicles (ATVs)

2013-10-15
2013-32-9173
An updated evaluation of the effects on predicted injuries of an example crush protective device (CPD) proposed for application to All-Terrain Vehicles (ATVs) is described. As in previous evaluations, this involved extending and applying the test and analysis methods defined in ISO 13232 (2005) for motorcycle impacts, to evaluate the effects of the example CPD in a sample of simulated ATV overturn events. Updated modeling refinements included lowering the energy levels of the simulated overturn events; accounting for potential mechanical/ traumatic (compressive) asphyxia mechanisms; refining and calibrating the force-deflection characteristics of helmet, head, legs and soil so as to reduce potential over-prediction of head and leg injuries; and calibrating the simulation against aggregated injury distributions from actual accidents.
X