Refine Your Search

Search Results

Technical Paper

Combustion Cycle-To-Cycle Variation Analysis in Diesel Baseline Hydrogen-Fueled Spark-Ignition Engines

2023-04-11
2023-01-0290
In the search for zero-carbon emissions and energy supply security, hydrogen is one of the fuels considered for internal combustion engines. The state-of-the-art studies show that a good strategy to mitigate NOx emissions in hydrogen-fueled spark-ignition engines (H2ICE) is burning ultra-lean hydrogen-air mixtures in current diesel architectures, due to their capability of standing high in-cylinder pressures. However, it is well-known that decreasing equivalence ratio leads to higher engine instability and greater cycle-to-cycle variations (CCVs). Nevertheless, hydrogen flames, especially at low equivalence ratios and high pressures, present thermodiffusive instabilities that speed up combustion, changing significantly the flame development and possibly its variability. This work evaluates the hydrogen combustion and their CCVs in two single-cylinder diesel baseline H2ICEs (light-duty and medium-duty) and their influence on performance parameters.
X