Refine Your Search

Topic

Author

Search Results

Journal Article

Comparative Assessment of Multi-Axis Bushing Properties Using Resonant and Non-Resonant Methods

2013-05-13
2013-01-1925
Shaped elastomeric joints such as engine mounts or suspension bushings undergo broadband, multi-axis loading; however, in practice, the elastomeric joint properties are often measured at stepped single frequencies (non-resonant test method). This article helps provide insight into multi-axis properties with new benchmark experiments that are designed to permit direct comparison between system resonant and non-resonant identification methods of the dynamic stiffness matrices of elastomeric joints, including multi-axis (non-diagonal) terms. The joints are constructed with combinations of inclined elastomeric cylinders to control non-diagonal terms in the stiffness matrix. The resonant experiment consists of an elastic metal beam end-supported by elastomeric joints coupling the in-plane transverse and longitudinal beam motion.
Technical Paper

Process Simulation to Improve Quality and Increase Productivity in Rolling, Ring Rolling and Forging

1991-02-01
910142
The practical and proven use of computers in forming technology include: CAD/CAM for die making; transfer of geometric data from the customer's CAD/CAM system to that of the supplier and vice versa; application of artificial intelligence and expert systems for part and process design; simulation of metal flow to eliminate forging defects; prediction and optimization of process variables; and analysis of stresses in dies as well as prevention of premature die failure. Intelligent use of this information can lead to significant gains in product quality and productivity. This paper presents three examples of application of process simulation to forming : rolling, ring rolling and forging.
Technical Paper

Errors Associated with Transfer Path Analysis when Rotations are not Measured

2007-05-15
2007-01-2179
Previously we had found significant errors in the interfacial force results for a source-path-receiver system where only translational motions were measured. This paper examines the sources of those errors by using computational finite and boundary element models. The example case consists of a source structure (with few modes), a receiver (with many modes) and three steel rod paths. We first formulate indirect, yet exact, methods for estimating interfacial forces, by assuming that six-dimensional motions at any location are available though we focus on only the driving points. One- and three-dimensional sub-sets of the proposed formulation are compared with the six-dimensional theory in terms of interfacial force and partial sound pressure spectra.
Technical Paper

Improving Fillet Weld Fatigue Performance by Improving Weld Shape

1998-04-08
981509
The fatigue performance of fillet-welded transverse attachments was compared for several procedure variants for both FCAW and SAW on ½ in. steel plates. Measurements of weld toe shape on adjacent pieces of weld indicated that smoother weld toes, as evidenced by larger weld toe radius, were correlated to improved fatigue performance for both processes. Fatigue tests conducted on 59 and 109 ksi yield strength plates did not show an effect of plate strength. Weld procedures designed to provide smooth toes, such as reduced parameter FCAW beads at horizontal weld toes and flat position FCAW at higher heat inputs, were shown to provide fatigue performances near post-weld improved fillets.
Technical Paper

Effects of Prepulse Resistance Spot Welding Schedules on the Weldability Characteristics of Galvanized Steel

1990-02-01
900740
Many automotive production plants are using various prepulse schedules for resistance spot welding thin gauge galvanized steel. The claimed reasons are that wider current range and longer electrode life are obtainable in comparison to the conventional schedule. However, data to support this are not available. The objective of this program was to determine the effect of prepulsation on spot weldability of galvanized steel. In this work, several prepulse resistance spot welding schedules were evaluated in two full factorial experiments. The effect of the number of prepulse cycles, the prepulse heat level and the effect of cool time were studied in detail. Weldability was evaluated using an electrode life test procedure in which the current range was periodically examined over the life of the electrodes. Generally, the results indicate that prepulsation has a negative effect on the resistance spot weldability of thin gauge galvanized steel.
Technical Paper

Welding Characteristics in Deformation Resistance Welding

2008-04-14
2008-01-1137
Deformation Resistance Welding (DRW) is a process that employs resistance heating to raise the temperature of the materials being welded to the appropriate forging range, followed by shear deformation which increases the contacting surface area of the materials being welded. Because DRW is a new process, it became desirable to establish variable selection strategies which can be integrated into a production procedure. A factorial design of experiment was used to examine the influence of force, number of pulses, and weld cycles (heating/cooling time ratio) on the DRW process. Welded samples were tensile tested to determine their strength. Once tensile testing was complete, the resulting strengths were observed and compared to corresponding percent heat and percent reduction in thickness. Tensile strengths ranged from 107 kN to 22.2 kN. A relationship between the maximum current and the weld variables was established.
Technical Paper

Correlation of a CAE Hood Deflection Prediction Method

2008-04-14
2008-01-0098
As we continue to create ever-lighter road vehicles, the challenge of balancing weight reduction and structural performance also continues. One of the key parts this occurs on is the hood, where lighter materials (e.g. aluminum) have been used. However, the aerodynamic loads, such as hood lift, are essentially unchanged and are driven by the front fascia and front grille size and styling shape. This paper outlines a combination CFD/FEA prediction method for hood deflection performance at high speeds, by using the surface pressures as boundary conditions for a FEA linear static deflection analysis. Additionally, custom post-processing methods were developed to enhance flow analysis and understanding. This enabled the modification of existing test methods to further improve accuracy to real world conditions. The application of these analytical methods and their correlation with experimental results are discussed in this paper.
Technical Paper

Vibro-Acoustic Effects of Friction in Gears: An Experimental Investigation

2001-04-30
2001-01-1516
Amongst various sources of noise and vibrations in gear meshing, transmission error and sliding friction between the teeth are two major constituents. As the operating conditions are altered, the magnitude of these two excitations is affected differently and either of them can become the dominant factor. In this article, an experimental investigation is presented for identifying the friction excitation and to study the influence of tribological parameters on the radiated sound. Since both friction and transmission error excitations occur at the same fundamental period of one meshing cycle, they result in similar spectral contents in the dynamic response. Hence specific methods like the variation of parameters are designed in order to distinguish between the individual vibration and noise sources. The two main tribological parameters that are varied are the lubricant and the surface finish characteristics of gear teeth.
Technical Paper

Vibration Power Transmission Through Multi-Dimensional Isolation Paths Over High Frequencies

2001-04-30
2001-01-1452
In many vibration isolation problems, translational motion has been regarded as a major contributor to the energy transmitted from a source to a receiver. However, the rotational components of isolation paths must be incorporated as the frequency range of interest increases. This article focuses on the flexural motion of an elastomeric isolator but the longitudinal motion is also considered. In this study, the isolator is modeled using the Timoshenko beam theory (flexural motion) and the wave equation (longitudinal motion), and linear, time-invariant system assumption is made throughout this study. Two different frequency response characteristics of an elastomeric isolator are predicted by the Timoshenko beam theory and are compared with its subsets. A rigid body is employed for the source and the receiver is modeled using two alternate formulations: an infinite beam and then a finite beam. Power transmission efficiency concept is employed to quantify the isolation achieved.
Technical Paper

Examination of High Frequency Characterization Methods for Mounts

2001-04-30
2001-01-1444
The knowledge of frequency-dependent dynamic stiffnesses of mounts, in axial and flexural motions, is needed to determine the behavior of many automotive sub-systems. Consequently, characterization and modeling of vibration isolators is increasingly becoming more important in mid and high frequency regimes where very few methods are known to exist. This paper critically examines some of the approximate identification methods that have been proposed in the literature. Then we present a new experimental identification method that yields frequency-dependent multi-dimensional dynamic stiffnesses of an isolator. The scope is however limited to a linear time-invariant system and our analysis is restricted to the frequency domain. The new characterization method uses two inertial elements at both ends of an isolator and free boundary conditions are maintained during testing.
Technical Paper

Acoustic Attenuation Performance of Perforated Absorbing Silencers

2001-04-30
2001-01-1435
The acoustic attenuation performance of a single-pass, perforated concentric silencer filled with continuous strand fibers is investigated theoretically and experimentally. One-dimensional analytical and three-dimensional boundary element methods are employed to predict the acoustic attenuation in the absence of mean flow. Measured complex characteristic impedance and wave number are used to account for the wave propagation through absorbing fiber. The perforation impedance facing the fiber is also presented in terms of the complex characteristic impedance and wave number. The effects of perforate duct porosity and the fiber density are examined. Comparisons of predictions with the experiments illustrate the need for multidimensional analysis at higher frequencies, while the one-dimensional treatment provides a reasonable accuracy at lower frequencies, as expected. The study also shows a significant improvement in the acoustic attenuation of the silencer due to fiber absorption.
Technical Paper

The Balance Between Durability, Reliability, and Affordability in Structural Composites Manufacturing: Preliminary Results

2003-03-03
2003-01-0459
Fiber reinforced structural composites will play a key role in the development of the next generation of transportation vehicles (passenger cars, vans, light trucks and heavy trucks) due to their high strength-to-weight and stiffness-to-weight ratio compared to metals. An integrated assessment of the durability, reliability, and affordability of these materials is critical to facilitate the inclusion of these materials into new designs. The result of this assessment should provide information to find the balance between the three performance measures. This paper describes a method to develop this assessment in the fabrication of sheet molding compound (SMC) parts, and discusses the concept of Preform Insert Assembly (PIA) for improved affordability in the manufacturing of composite parts.
Technical Paper

Evaluation of DIC Based Forming Limit Curve Methods at Various Temperatures of Aluminum Alloys for Automotive Applications

2017-03-28
2017-01-0309
Aluminum alloys are increasingly utilized in automotive body panels and crash components to reduce weight. Accurately assessing formability of the sheet metal can reduce design iteration and tooling tryouts to obtain the desired geometry in aluminum stampings. The current ISO forming limit curve (FLC) procedure is a position dependent technique which produces the FLC based on extrapolation at the crack location. As aluminum sheet metal use increases in manufacturing, accurate determination of the forming limits of this material will be necessary prior to production. New time dependent methods using digital imaging correlation (DIC) account for variations in material behavior by continuously collecting strain data through the material necking point. This allows more accurate FLC determination that is necessary for efficient design in the automotive stamping industry.
Technical Paper

Measurement and Modeling of Tire Forces on a Low Coefficient Surface

2006-04-03
2006-01-0559
There exists a fairly extensive set of tire force measurements performed on dry pavement. But in order to develop a low-coefficient of friction tire model, a set of tire force measurements made on wet pavement is required. Using formulations and parameters obtained on dry roads, and then reducing friction level to that of a wet road is not sufficient to model tire forces in a high fidelity simulation. This paper describes the process of more accurately modeling low coefficient tire forces on the National Advanced Driving Simulator (NADS). It is believed that the tire model improvements will be useful in many types of NADS simulations, including ESC and other advanced vehicle technology studies. In order to produce results that would come from a road surface that would be sufficiently slippery, a set of tires were shaved to 4/32 inches and sent to a tire-testing lab for measurement.
Technical Paper

Effect of E-Modulus Variation on Springbackand a Practical Solution

2018-04-03
2018-01-0630
Springback affects the dimensional accuracy and final shape of stamped parts. Accurate prediction of springback is necessary to design dies that produce the desired part geometry and tolerances. Springback occurs after stamping and ejection of the part because the state of the stresses and strains in the deformed material has changed. To accurately predict springback through finite element analysis, the material model should be well defined for accurate simulation and prediction of stresses and strains after unloading. Despite the development of several advanced material models that comprehensively describe the Bauschinger effect, transient behavior, permanent softening of the blank material, and unloading elastic modulus degradation, the prediction of springback is still not satisfactory for production parts. Dies are often recut several times, after the first tryouts, to compensate for springback and achieve the required part geometry.
Technical Paper

Recent Developments in Friction Stir Welding

1998-06-02
981875
Friction stir welding (FSW) is a new welding process developed at The Welding Institute in Cambridge, U.K. This process uses a non-consumable rotating third body to generate frictional heat and create forging to facilitate continuous solid-state joints. In this paper, the current state of the art of FSW is discussed. A preliminary description of the process is provided, followed by the results of some relatively simple thermal modeling. The modeling results are used to provide a description of temperature distributions in FSW, as well as illustrate the effects of variations in process conditions. Representative microstructures of FSW on an Al 6061 alloy are then presented. Properties of these friction stir welds are then discussed and compared to those of both the base metal and to comparable GTAW welds. Some discussion is then given to the effects of section thickness on FSW. Examples are given of friction stir welds on aluminum alloys ranging from 2 to 30 mm in thickness.
Technical Paper

EFFECT OF FIT-UP CONDITIONS WHEN USING CONSTANT CURRENT CONTROL SYSTEMS FOR RESISTANCE SPOT WELDING

1993-03-01
930451
Resistance welding control systems utilizing secondary current feedback receive widespread utilization both in Europe and Japan. However, these types of control systems are only beginning to be used in any extended basis in this country. Currently, two variants of these systems are available; so called “self-teaching” systems, and “learning curve” systems. Either system has been shown to be capable of providing a stable secondary resistance welding current within two cycles. Recent work has indicated, however, that the self-teaching type control systems may be adversely affected by non-optimum set-up conditions, particularly poor fit-up and the introduction of organics (sealers or adhesives) at the faying surface. This work examines the performance of learning curve type constant current control systems under these adverse set-up conditions. Six conditions were selected for study; three degrees of progressively poorer fit-up, with and without an organic sealer.
Technical Paper

Corner Design in Deep Drawn Rectangular Parts

1997-02-24
970437
The influence of die corner geometry on the attainable draw depth of rectangular parts was investigated using 3-D FEM and optimum rectangular blanks. Axisymmetric cup analysis was not adequate because a corner assist effect promotes corner draw. Guidelines for selecting corner radius were developed and the sensitivities of the maximum part depth to other process variables, such as drawbead restraint force; die clearance gap; friction coefficient; strain rate sensitivity; material anisotropy; and strain hardening exponent, were simulated. The results are much more conservative than handbook rules, which to not to take into account the details of blank size, drawbead restraint, die geometry, material properties, and friction.
Technical Paper

Applications of Computer Simulations for Part and Process Design for Automotive Stampings

1997-02-24
970985
Recent studies in sheet metal forming, conducted at universities world wide, emphasize the development of computer aided techniques for process simulation. To be practical and acceptable in a production environment, these codes must be easy to use and allow relatively quick solutions. Often, it is not necessary to make exact predictions but rather to establish the influence of process variables upon part quality, tool stresses, material flow, and material thickness variation. In cooperation with its industrial partners, the ERC for Net Shape Manufacturing of the Ohio State University has applied a number of computer codes for analysis and design of sheet metal forming operations. This paper gives a few selected examples taken from automotive applications and illustrates practical uses of computer simulations to improve productivity and reduce tool development and manufacturing costs.
Technical Paper

Development of a Closed Loop Paint Circulation System for Non-Newtonian Waterborne Coatings

2006-04-03
2006-01-0755
Waterborne coatings are being used more widely in the automotive industry due to their environmentally benign properties. As the rheological properties of the waterborne coatings are significantly different from most solvent borne coatings, paint circulation systems that are designed for solvent borne coatings are not necessarily well suited for waterborne coatings. It is possible to fully characterize the rheology of the waterborne coatings and make an optimized design of the paint circulation system, resulting in improved finish quality and reduced operating cost.
X