Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Part 3: A Study of Friction and Lubrication Behavior for Gasoline Piston Skirt Profile Concepts

2009-04-20
2009-01-0193
This paper deals with the friction performance results for various new concept piston skirt profiles. The program was conducted under the assumption that friction performance varies by the total amount of oil available at each crank angle in each stroke and the instantaneous distribution of the oil film over the piston skirt area. In previous papers [1,2] it was that lower friction designs would be expected to show higher skirt slap noise. This paper discusses the correlation between friction and skirt slap for each new concept profile design. Finally, this paper explains the friction reduction mechanism for the test samples for each stroke of the engine cycle by observing the skirt movement and oil lubrication pattern using a visualization engine.
Technical Paper

Part 1: Piston Friction and Noise Study of Three Different Piston Architectures for an Automotive Gasoline Engine

2006-04-03
2006-01-0427
The objective was to rank piston friction and noise for three piston architectures at three cold clearance conditions. Piston secondary motion was measured using four gap sensors mounted on each piston skirt to better understand the friction and noise results. One noticeable difference in friction performance from conventional designs was as engine speed increased the friction force during the expansion stroke decreased. This was accompanied by relatively small increases in friction force during the other strokes so Friction Mean Effective Pressure (FMEP) for the whole cycle was reduced. Taguchi's Design of Experiment method was used to analyze the variances in friction and noise.
Technical Paper

Part 2: The Effects of Lubricating Oil Film Thickness Distribution on Gasoline Engine Piston Friction

2007-04-16
2007-01-1247
Due to increasing economic and environmental performance requirements of internal combustion engines, piston manufacturers now focus more on lower friction designs. One factor strongly influencing the friction behavior of pistons is the dynamic interaction between lubricating oil, cylinder bore and piston. Therefore, the dynamic effect of the oil film in the gap between the liner and piston has been studied, using a single cylinder engine equipped with a sapphire window. This single cylinder engine was also equipped with a floating liner, enabling real-time friction measurement, and directly linking the oil film behavior to friction performance of pistons.
X