Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Significant NOx Formation at the Tip of Diesel Spray Flames and Its Reduction by Enhanced Mixing in the Tip Region

2003-05-19
2003-01-1786
Similarities in the structure of spray flames suggest that higher fuel injection speeds would reduce NOx emission as the fuel residence time in the reaction zone would shorter. However, in diesel combustion it is commonly known that NOx emissions increase when the fuel injection velocity is increased. The authors have assumed that the mixing time scale is significantly large at the spray tip region where most of the NOx in the emissions is formed. The increase in NOx by the higher injection velocity in engines can be explained as the mixing time scale increases corresponding to the penetration length relative to the nozzle diameter. The purpose of this paper is to confirm this assumption and to show an effective method to reduce NOx emissions based on the analysis. Experiments were made to measure NOx from a jet flame injected in a closed vessel with different injection speeds and injection periods.
Technical Paper

Description and Analysis of Diesel Engine Rate of Combustion and Performance Using Wiebe's Functions

1985-02-01
850107
Two laboratory engines, one direct, injection and one indirect injection, were operated for a range of speeds, loads, injection timings, fuels, and steady and transient conditions. Rate of combustion data were derived and analyzed using a double Wiebe's function approximation. It is shown that three of the six function parameters are constant for a wide range of conditions and that the other three can be expressed as linear functions of the amount of fuel injected during ignition lag. Engine noise, smoke, and thermal efficiency correlate with the parameters describing the amount of premixed combustion and diffusive combustion duration. These characteristics may be optimized by reducing the quantity of premixed combustion while maintaining the duration of diffusive combustion to less than 60°CA.
X