Refine Your Search

Search Results

Viewing 1 to 10 of 10
Journal Article

Suspension Kinematic/Compliance Uncertain Optimization Using a Chebyshev Polynomial Approach

2015-04-14
2015-01-0432
The optimization of vehicle suspension kinematic/compliance characteristics is of significant importance in the chassis development. Practical suspension system contains many uncertainties which may result from poorly known or variable parameters or from uncertain inputs. However, in most suspension optimization processes these uncertainties are not accounted for. This study explores the use of Chebyshev polynomials to model complex nonlinear suspension systems with interval uncertainties. In the suspension model, several kinematic and compliance characteristics are considered as objectives to be optimized. Suspension bushing characteristics are considered as design variables as well as uncertain parameters. A high-order response surface model using the zeros of Chebyshev polynomials as sampling points is established to approximate the suspension kinematic/compliance model.
Journal Article

An Improved Human Biodynamic Model Considering the Interaction between Feet and Ground

2015-04-14
2015-01-0612
Nowadays, studying the human body response in a seated position has attracted a lot of attention as environmental vibrations are transferred to the human body through floor and seat. This research has constructed a multi-body biodynamic human model with 17 degrees of freedom (DOF), including the backrest support and the interaction between feet and ground. Three types of human biodynamic models are taken into consideration: the first model doesn't include the interaction between the feet and floor, the second considers the feet and floor interaction by using a high stiffness spring, the third one includes the interaction by using a soft spring. Based on the whole vehicle model, the excitation to human body through feet and back can be obtained by ride simulation. The simulation results indicate that the interaction between feet and ground exerts non-negligible effect upon the performance of the whole body vibration by comparing the three cases.
Technical Paper

Study on Vibration Reduction Technology for Transportation of TEG Dehydration Unit Regeneration Module

2021-04-06
2021-01-0334
In the petroleum and gas industry, cargo truck is one of the most important ways to transfer the skid-mounting from the manufacturer to the job location. Under the condition of bumpy road surface, the random vibration from the ground can easily cause the resonance of the internal equipment components of the skid-mounting, produce large deformation in the pipeline and equipment connection, and even the equipment will be damaged. In this paper, the finite element analysis model and dynamic rigid flexible coupling model of a TEG (Triethyleneglycol) dehydration unit regeneration skid-mounting are established by using the finite element analysis and multi-body dynamics software. The modal analysis of the skid and the vibration of the whole vehicle under different road excitation and driving conditions are carried out. Two solutions are proposed to improve the anti-vibration ability of the skid, and comparative analysis is made.
Technical Paper

Analysis on Synchronizer of Manual Transmission using Finite Element Analysis

2015-04-14
2015-01-1148
A simulation model of the single cone synchronizer is presented using the dynamic implicit algorithm with commercial Finite Element Analysis (FEA) software Abaqus. The meshing components include sleeve gear, blocking ring and clutch gear, which are all considered as deformation body. The processes mainly contain the contact between sleeve teeth and blocking teeth, meshing period and the impact of sleeve teeth and clutch gear teeth, and these nonlinear contact steps are realized with Abaqus. In addition, a shift force derives from experiment is applied to the sleeve ring, and a moment is added to the clutch gear to realize the relative rotational speed. Based on the FEA model, the effect of the varied frictional coefficients between the cone surfaces of blocking ring and clutch gear on the synchronizer time and contact stress is discussed. Variation of stresses and contact force with respect to time are evaluated from this analysis.
Technical Paper

Multi-objective Optimization of the PMS Based on Non-dominated Sorting Genetic Algorithm II

2015-04-14
2015-01-1675
In order to reasonably match the variable stiffness and location of the Powertrain Mounting System (PMS) and optimize the ride comfort of commercial vehicle, a thirteen degrees of freedom (DOF) model of a commercial vehicle was established in Adams/view. Specially, the support rod installed on the upside of the transmission case was modeled as a flexible body. The vibration isolation provided by the PMS was evaluated in three aspects: the energy decoupling of the powertrain, the response force of the mount and the displacement of the powertrain. The energy decoupling ratio, the force RMS of the mount when force excitation was applied on the powertrain and the displacement of the powertrain Center of Gravity (C.G) when displacement excitation was applied on the vehicle chassis were selected as the optimal target. Adams and MATLAB were integrated into the optimization software iSIGHT to optimize the PMS. NSGA-II is used to obtain some Pareto-optimal solutions of PMS.
Technical Paper

In-Plane Flexible Ring Tire Model Development for Ride Comfort & Braking/Driving Performance Analysis under Straight-line Driving Condition

2015-04-14
2015-01-0628
Vehicle tire performance is an important consideration for vehicle handling, stability, mobility, and ride comfort as well as durability. Significant efforts have been dedicated to tire modeling in the past, but there is still room to improve its accuracy. In this study, a detailed in-plane flexible ring tire model is proposed, where the tire belt is discretized, and each discrete belt segment is considered as a rigid body attached to a number of parallel tread blocks. The mass of each belt segment is accumulated at its geometric center. To test the proposed in-plane tire model, a full-vehicle model is integrated with the tire model for simulation under a special driving scenario: acceleration from rest for a few seconds, then deceleration for a few seconds on a flat-level road, and finally constant velocity on a rough road. The simulation results indicate that the tire model is able to generate tire/road contact patch forces that yield reasonable vehicle dynamic responses.
Technical Paper

Recursive Estimation of Vehicle Inertial Parameters Using Polynomial Chaos Theory via Vehicle Handling Model

2015-04-14
2015-01-0433
A new recursive method is presented for real-time estimating the inertia parameters of a vehicle using the well-known Two-Degree-of- Freedom (2DOF) bicycle car model. The parameter estimation is built on the framework of polynomial chaos theory and maximum likelihood estimation. Then the most likely value of both the mass and yaw mass moment of inertia can be obtained based on the numerical simulations of yaw velocity by Newton method. To improve the estimation accuracy, the Newton method is modified by employing the acceptance probability to escape from the local minima during the estimation process. The results of the simulation study suggest that the proposed method can provide quick convergence speed and accurate outputs together with less sensitivity to tuning the initial values of the unidentified parameters.
Technical Paper

Vehicle Handling Prediction with Hybrid Uncertainty Using a New Analysis Method

2015-04-14
2015-01-0650
Practical vehicle contains many uncertainties which may result from poorly known or variable parameters or from uncertain inputs. These uncertainties can be presented by fuzzy parameters, random parameters or interval parameters. A new uncertain analysis method is applied to the case in which the vehicle system contains both random parameters and interval parameters. This new uncertain method is a systematic integration of the Polynomial Chaos (PC) theory which accounts for random uncertainty and Chebyshev inclusion function theory which accounts for interval uncertainty. A multi-body vehicle model with both random parameters and interval parameters is used as a numerical model and vehicle handling is investigated in details. The Monte Carlo method combined with the scanning method is used to demonstrate the effectiveness of the proposed method for vehicle handling.
Technical Paper

Powertrain Motion Control Analysis under Quasi-Static Extreme Loads

2016-04-05
2016-01-0439
The powertrain mounting system (PMS) plays an important role in improving the NVH (Noise, Vibration, Harshness) quality of the vehicle. In all running conditions of a vehicle, the displacements of the powertrain C.G. should be controlled in a prescribed range to avoid interference with other components in the vehicle. The conventional model of PMS is based on vibration theory, considering the rotation angles are small, ignoring the sequence of the rotations. However, the motion of PMS is in 3D space with 3 translational degrees of freedom and 3 rotational degrees of freedom, when the rotation angles are not small, the conventional model of PMS will cause errors. The errors are likely to make powertrain interfering with other components. This paper proposes a rigid body mechanics model of the powertrain mounting system. When the powertrain undergoes a large rotational motion, the rigid body mechanics model can provide more accurate calculation results.
Journal Article

A New Interval Inverse Analysis Method and Its Application in Vehicle Suspension Design

2016-04-05
2016-01-0277
Interval inverse problems can be defined as problems to estimate input through given output, where the input and output are interval numbers. Many problems in engineering can be formulated as inverse problems like vehicle suspension design. Interval metrics, instead of deterministic metrics, are used for the suspension design of a vehicle vibration model with five degrees of freedom. The vibration properties of a vehicle vibration model are described by reasonable intervals and the suspension interval parameters are to be solved. A new interval inverse analysis method, which is a combination of Chebyshev inclusion function and optimization algorithm such as multi-island genetic algorithm, is presented and used for the suspension design of a vehicle vibration model with six conflicting objective functions. The interval design of suspension using such an interval inverse analysis method is shown and validated, and some useful conclusions are reached.
X