Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

The Effect of Cooled Exhaust Gas Recirculation for a Naturally Aspirated Stationary Gas Engine

2016-11-08
2016-32-0093
Small natural gas cogeneration engines frequently operate with lean mixture and late ignition timing to comply with NOx emission standards. Late combustion phasing is the consequence, leading to significant losses in engine efficiency. When substituting a part of the excess air with exhaust gas, heat capacity increases, thus reducing NOx emissions. Combustion phasing can be advanced, resulting in a thermodynamically more favourable heat release without increasing NOx but improving engine efficiency. In this work, the effect of replacing a part of excess air with exhaust gas was investigated first in a constant volume combustion chamber. It enabled to analyse the influence of the exhaust gas under motionless initial conditions for several relative air-fuel ratios (λ = 1.3 to 1.7). Starting from the initial value of λ, the amount of CH4 was maintained constant as a part of the excess air was replaced by exhaust gas.
Technical Paper

Numerical Investigations of a Naturally Aspirated Cogeneration Engine Operating with Overexpanded Cycle and Optimised Intake System

2014-11-11
2014-32-0109
Electrical power and efficiency are decisive factors to minimise payoff time of cogeneration units and thus increase their profitability. In the case of (small-scale) cogeneration engines, low-NOx operation and high engine efficiency are frequently achieved through lean burn operation. Whereas higher diluted mixture enables future emission standards to be met, it reduces engine power. It further leads to poor combustion phasing, reducing engine efficiency. In this work, an engine concept that improves the trade-off between engine efficiency, NOx emissions and engine power, was investigated numerically. It combines individual measures such as lean burn operation, overexpanded cycle as well as a power- and efficiency-optimised intake system. Miller and Atkinson valve timings were examined using a detailed 1D model (AVL BOOST). Indicated specific fuel consumption (ISFC) was improved while maintaining effective compression ratio constant.
Journal Article

High Efficiency by Miller Valve Timing and Stoichiometric Combustion for a Naturally Aspirated Single Cylinder Gas Engine

2020-01-24
2019-32-0588
Small-scale cogeneration units (Pel < 50 kW) frequently use lean mixture and late ignition timing to comply with current NOx emission limits. Future tightened NOx limits might still be met by means of increased dilution, though both indicated and brake efficiency drop due to further retarded combustion phasing and reduced brake power. As an alternative, when changing the combustion process from lean burn to stoichiometric, a three-way-catalyst allows for a significant reduction of NOx emissions. Combustion timing can be advanced, resulting in enhanced heat release and thus increased engine efficiency. Based on this approach, this work presents the development of a stoichiometric combustion process for a small naturally aspirated single cylinder gas engine (Pel = 5.5 kW) originally operated with lean mixture. To ensure low NOx emissions, a three-way-catalyst is used.
Technical Paper

Numerical Investigations of Overexpanded Cycle and Exhaust Gas Recirculation for a Naturally Aspirated Lean Burn Engine

2013-10-15
2013-32-9081
A large number of small size gas-fired cogeneration engines operate with homogenous lean air-fuel mixture. It allows for engine operation at high efficiency and low NOx emissions. As a result of the rising amount of installed cogeneration units, however, a tightening of the governmental emission limits regarding NOx is expected. While engine operation with further diluted mixture reduces NOx emissions, it also decreases engine efficiency. This leads to lower mean effective pressure, in particular for naturally aspirated engines. In order to improve the trade-off between engine efficiency, NOx emissions and mean effective pressure, numerical investigations of an alternative combustion process for a series small cogeneration engine were carried out. In a first step, Miller and Atkinson cycles were implemented by advanced or retarded inlet valve closing timings, respectively.
Technical Paper

Miller/Atkinson Valve Timing as Full Load Concept for a Naturally Aspirated Cogeneration Engine

2015-11-17
2015-32-0713
Lean burn operation allows small cogeneration engines to achieve both high efficiency and low NOx emissions. While further mixture dilution enables future emission standards to be met, it leads to retarded combustion phasing and losses in indicated engine efficiency. In the case of naturally aspirated engines, IMEP drops due to lower fuel fraction, increasing brake specific fuel consumption. In this work, an alternative engine configuration was investigated that improves the trade-off between engine efficiency, NOx emissions and IMEP. It combines well-established means such as Miller/Atkinson valve timing and optimised intake system for a single-cylinder cogeneration engine, operating with homogenous lean air-natural gas mixture. First, the engine configuration was analysed using a detailed 1D CFD model, implying a significant potential in reaching the project target.
Journal Article

Hot Surface Assisted Compression Ignition (HSACI) as an Approach to Extend the Operating Limits of a Natural Gas Fueled HCCI Engine

2022-01-09
2022-32-0027
The concept of hot surface assisted compression ignition (HSACI) was previously shown to allow for control of combustion timing and to enable combustion beyond the limits of pure homogeneous charge compression ignition (HCCI) combustion. This work investigates the potential of HSACI to extend the operating limits of a naturally aspirated single-cylinder natural gas fueled HCCI engine. A zero-dimensional (0D) thermo-kinetic modeling framework was set up and coupled with the chemical reaction mechanism AramcoMech 1.3. The results of the 0D study show that reasonable ignition timings in the range 0-12°CA after top dead center (TDC) in HCCI can be expressed by constant volume ignition delays at TDC conditions of 9-15°CA. Simulations featuring the two-stage combustion in HSACI point out the capability of the initial heat release as a means to shorten bulk-gas ignition delay.
X