Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

LES Analysis of Fuel/Air Mixing and Heat Release Processes in a Diesel Spray

2013-10-14
2013-01-2537
Numerical calculations were performed to investigate the mixture formation, ignition, and combustion processes in a diesel spray. The spray was formed by injecting n-heptane into a constant volume vessel under high-temperature and high-pressure conditions. The fuel droplets were described by a discrete droplet model (DDM). Numerical calculations for the flow and turbulent diffusion processes were performed on the basis of large eddy simulation (LES) to describe the processes of local non-homogeneous mixture formation and heat release. The oxidation processes in the mixture were calculated by Schreiber's five-step mechanism for n-heptane. Calculations were performed for sprays formed by single-stage injection and pilot/main two-stage injection. The flame structure in a diesel spray and its temporal change were discussed using a flame index proposed by Yamashita et al.
Journal Article

A Study on Diesel Spray Flame by Time-Resolved PIV with Chemiluminescence of OH*

2021-09-21
2021-01-1167
To clarify the relationship between the local heat release and the velocity distribution inside the diesel spray flame, simultaneous optical diagnostics of OH* chemiluminescence and particle image velocimetry (PIV) have been applied to the diesel spray flame under the elevated in-cylinder pressure and temperature conditions formed in a rapid compression expansion machine (RCEM). The cranking speed of the RCEM was 900 rpm, and the in-cylinder pressure and temperature were 8 MPa and 800 K at the start of injection, respectively. The amount of fuel was 10.2 mg. The injection pressure was 120, 90, and 60 MPa. To minimize the disturbance of luminous flame on optical diagnostics, a solvent, with comparable combustion characteristics to diesel fuel was used as fuel. The oxygen concentration was set to 15%. Results clearly show that PIV can successfully analyze the velocity distribution in diesel spray flames.
X