Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Automated Parameter Determination for IC Engine Simulation Models

2009-04-20
2009-01-0674
When developing and later using simulation models for combustion prediction in internal combustion engines, it is first of all necessary to determine the model constants. This paper describes the development of a method for the automated determination of model parameters which can be applied to any internal combustion simulation model. The work is not aimed at developing a new optimizing algorithm but at adjusting and adapting an existing optimizer to the special needs and convergence problems, which occur when applied to combustion models. Consequently, the paper describes the set-up of the objective function and several methods for improving the convergence. Finally, an outline for a strategy which uses the optimizing tool for model development is presented.
Technical Paper

ROHR Simulation for DI Diesel Engines Based on Sequential Combustion Mechanisms

2006-04-03
2006-01-0654
In this paper a zero-dimensional simulation methodology for efficient pre-optimization of the combustion process in DI diesel engines is presented. A new model for the calculation of the rate of heat release is unveiled. It is based on the separate description of both the primary processes closely related to the fuel jet as well as the following combustion of the fuel mass remaining after the end of injection. The modeling of fuel mass distribution between premixed and diffusion combustion as well as a model for the fuel preparation time are explained. Furthermore, models for the calculation of ignition delay and premixed combustion based on an extended Arrhenius formulation are discussed, as well as turbulent combustion on the basis of a Magnussen model. The new features of the heat release model prove to be necessary to describe the effects of modern high-pressure fuel injection systems on the combustion process regarding the strong influence of the injection rate on the burn rate.
Technical Paper

New Approaches to Lube Oil Consumption Measurement Based on the Tracer Method

2019-01-15
2019-01-0077
In the research and development of internal combustion engines, there are several drivers for developing an accurate online lube oil consumption (LOC) measurement system. Lube oil consumption is considered to be a root cause of hydrocarbon and particle emissions and lubricating oil autoignition. It also negatively influences the life cycle cost for engine operators. Highly accurate measurement of lube oil consumption must be possible before it can be reduced - or rather optimized - to levels stakeholders will require in the future. State-of-the-art methods such as gravimetric and volumetric measurements are not fully satisfactory for several reasons. Generally, offline LOC measurement is no longer suitable for fast and accurate measuring cycles, oil condition monitoring and wear monitoring. At present, tracer methods are considered to be the most promising approach. However, current tracer methods have their downsides as well.
Technical Paper

Engine Operating Parameter-based Heat Transfer Simulation to Predict Engine Warm-up

2014-04-01
2014-01-1103
Optimization of engine warm-up behavior has traditionally made use of experimental investigations. However, thermal engine models are a more cost-effective alternative and allow evaluation of the fuel saving potential of thermal management measures in different driving cycles. To simulate the thermal behavior of engines in general and engine warm-up in particular, knowledge of heat distribution throughout all engine components is essential. To this end, gas-side heat transfer inside the combustion chamber and in the exhaust port must be modeled as accurately as possible. Up to now, map-based models have been used to simulate heat transfer and fuel consumption; these two values are calculated as a function of engine speed and load. To extend the scope of these models, it is increasingly desirable to calculate gas-side heat transfer and fuel consumption as a function of engine operating parameters in order to evaluate different ECU databases.
X