Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Piston Ring Tribological Challenges on the Next Generation of Flex-fuel Engines

2010-05-05
2010-01-1529
With the current use of bio-renewable fuel, the application of Ethanol in Flex-Fuel vehicles presents a very low CO2 emission alternative when the complete cycle, from plantation, fuel production, till vehicle use, is considered. In Brazil more than 80% of the car production is composed of Flex-Fuel vehicles. Due to the lower heating content of the Ethanol, more aggressive combustion calibrations are used to obtain the same engine power than when burning gasoline. Such Ethanol demands, associated with the continuous increase of engine specific power has lead to thermo-mechanical loads which challenges the tribology of piston rings. The ethanol use brings also some specific tribological differences not very well understood like fuel dilution in the lube oil, especially on cold start, corrosive environment etc. Under specific driving conditions, incipient failures like spalling on nitrided steel top rings have been observed.
Technical Paper

The Interaction of Piston-Ring-Cylinder on Flex Fueled Engines

2010-10-06
2010-36-0327
Modern SI engines focusing on CO2 emission reduction has been applying flex fuel technology to enable burning biomass fuels. The prime route is the use of ethanol fuel on these engines. The action of designing an engine to run with ethanol and gasoline (Flex-Fueled Engines) affects powercell components in different ways. The mechanical loads are higher to ethanol fuel. The combustion pressure can be increased without the risk of knocking for ethanol while for gasoline the compression rate of the piston is limited due to knocking occurrence. The spark time also occurs earlier which impacts components lubrication once the maximum load happens near the top dead center (TDC) where the sliding speed is lower and consequently there is lower oil film thickness. Such combination of spark time and sliding speed may also affect dynamics which can affect inertia and load composition of engine components.
X