Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Safety Related Testing and Results of Polycarbonate and Tempered Glass Non-Windshield Glazing Applications

1998-02-23
980863
This paper presents results from a series of tests that address safety related issues concerning vehicle glazing. These issues include occupant containment, head impact injury, neck injuries, fracture modes, and laceration. Component-level and full vehicle crash tests of standard and polycarbonate non-windshield glazing were conducted. The tests were conducted as part of a study to demonstrate that there is no decrease in the safety benefits offered by polycarbonate glazing when compared to current glazing. Readers of this paper will gain a broader understanding of the tests that are typically conducted for glazing evaluation from a safety perspective, as well as gain insight into the meaning of the results.
Technical Paper

A General Discussion on Interior Design Alternatives in Response to FMVSS 201U-Upper Interior Head Impact Protection

1998-09-29
982348
The implementation of Federal Motor Vehicle Safety Standard (FMVSS) 201U-Upper Interior Head Impact Protection[1] will require significant changes to vehicle interiors. The response from the safety industry to this regulation has resulted in a number of new and innovative design solutions. These countermeasures include integrated trim components, foam, and other types of deformable structures. The challenge to the safety industry is to design the components to provide higher levels of head impact protection without sacrificing other important considerations such as vision, appearance, durability, and cost. This paper will present background information on FMVSS 201U testing, discuss various countermeasure concepts currently being implemented, and suggest design alternatives relative to specific regions in a given vehicle.
Technical Paper

A 100 G Frontal Crash Sled Test System

2004-03-08
2004-01-0473
This paper describes the development of a new sled system that can address many safety-related issues pertaining to the racing industry. The system was designed to re-create acceleration and velocity levels similar to levels evident in race car crashes. The sled utilizes equipment typically used in passenger car crash research with the primary change to a specially designed lightweight carriage. This paper will overview the system and the types of crash events that can be simulated. Readers of this paper will gain a much broader understanding of accelerator sled testing and the issues related to the simulation of high speed crashes using physical testing.
Technical Paper

Vehicle Seating-An Overview of How Advanced Airbag Regulations Will Effect Non-FMVSS Test Procedures

2001-03-05
2001-01-0116
Recently, the National Highway Traffic Safety Administration (NHTSA) revised the Final Rule for Federal Motor Vehicle Safety Standard (FMVSS 208) - Occupant Crash Protection [1]. This rule, which will first take effect during the 2004 model year, specifies a number of new compliance test requirements that advanced frontal protection airbags will have to meet. The goal of the new standard is to reduce the risk of serious airbag induced injuries, particularly for small women and young children, and provide improved frontal crash protection for all occupants. In response to this new rule, vehicles in the future will have electronic sensors located in the seat and other advanced sensor systems. These sensors will be designed to measure critical data, such as occupant weight and size, which will be used to control the airbag. The reliability of the sensors through the entire life of a vehicle is critical to its overall safety characteristics.
Technical Paper

Role of the Body Mount on the Passenger Compartment Response of a Frame/Body Structured Vehicle in Frontal Crash

1998-02-23
980861
A comprehensive strategy to investigate the role of the body mounts on the passenger compartment response in a frontal crash event is presented. The activities of the study include quasi-static vehicle crush testing, development of a component-level dynamic body mount test methodology, lumped-mass computer modeling, as well as technical analysis. In addition, a means of investigating the effects the body mounts have on the passenger compartment response during a frontal barrier impact is addressed.
Technical Paper

Testing Techniques for Developing Input Data for Crash Simulation Models

1998-02-23
980860
Computer simulation modelling has become one of the cornerstones for automotive safety vehicle development. The desire to shorten vehicle design schedules, as well as reduce prototype build and test cycles, is driving the need for more useful and accurate simulation models. This paper discusses testing techniques for two commonly used types of models; Lumped Mass/Spring and Occupant Response Simulation. These models are used for vehicle structure and interior component and restraint development, respectively. Although these types of simulations are not new to the industry, both the actual models and testing techniques used to generate input data have been gradually improved throughout the years. Readers of this paper will gain a broader understanding of the usefulness of these models, as well as the component testing which is done to build a valid simulation.
Technical Paper

The Effect of Airbag Suppression Systems on Durability and Safety-Related Testing Procedures

2005-04-11
2005-01-0744
Over the last several years, designers have been working toward developing airbag suppression systems in order to satisfy the new Federal Motor Vehicle Safety Standard (FMVSS) 208 - Occupant Crash Protection requirements currently being phased-in [1, 2]. By September 1, 2005, all vehicles are required to be in compliance with the new requirements. The new rule requires that vehicles must have an airbag suppression system that turns the airbag off in cases where a child or child seat is detected in the front passenger occupant position. Typically incorporated in the seating structure or cushion area, these suppression systems are activated each time the seat is occupied. More so than any other component, this feature makes safety, durability, and reliability testing of these systems critical to their functionality. This paper will discuss how airbag suppression systems have affected the standard testing procedures of vehicle components including seats and airbags.
Technical Paper

FMVSS 214 Dynamic NPRM - An Overview of the New Procedure, Component-Level Development Tests, and Vehicle Design Changes

2005-04-11
2005-01-0742
The National Highway Traffic Safety Administration (NHTSA) has issued a Notice of Proposed Rulemaking (NPRM) to upgrade the dynamic portion of FMVSS 214 - Side Impact Protection [1]. This notice adds an oblique pole test to the existing moving deformable barrier test and covers a wider range of occupant sizes in a broader range of seat positions. These upgrades will present several challenges to vehicle manufacturers and suppliers. This paper will provide an overview of the NPRM, review test data used in support of the NPRM, describe component-level tests used to develop ideal side impact properties, and overview the vehicle changes that will be needed to meet these requirements.
X