Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Simulation of Friction-Induced Vibrations of Window Sealing Systems

2007-05-15
2007-01-2268
In this study, friction-induced vibrations of the window sealing system of a vehicle were investigated using a detailed numerical model. A lumped element, single-degree-of-freedom model was first developed for verification of the numerical procedures. An approximate expression for the frequency of the stick-slip oscillations was obtained. The model indicated that the frequency decreased as the normal force and the difference between the static and kinetic friction coefficients were increased. Stick-slip oscillations were then simulated using a finite element model of a glass run seal using an explicit time marching method. The motion of the seal during the slipping phase was in the direction of the friction force. The peak frequency was found to vary according to the glass position on the seal surface. The results indicated that both the periods of the stick and slip phases of the seal motion affect the frequency of the stick-slip oscillations.
Technical Paper

Surface Pressure Fluctuations in Separated-Reattached Flows Behind Notched Spoilers

2007-05-15
2007-01-2399
Notched spoilers may be used to suppress flow-induced cavity resonance in vehicles with open sunroofs or side windows. The notches are believed to generate streamwise vortices that break down the structure of the leading edge cross-stream vortices predominantly responsible for the cavity excitation. The objectives of the present study were to gain a better understanding of the buffeting suppression mechanisms associated with notched spoilers, and to gather data for computational model verification. To this end, experiments were performed to characterize the surface pressure field downstream of straight and notched spoilers mounted on a rigid wall to observe the effects of the notches on the static and dynamic wall pressure. Detailed flow velocity measurements were made using hot-wire anemometry. The results indicated that the presence of notches on the spoiler reduces drag, and thus tends to move the flow reattachment location closer to the spoiler.
Journal Article

Effects of Notches on Surface Pressure Fluctuations Downstream of a Leading Edge Spoiler

2009-05-19
2009-01-2238
Notched spoilers have been observed to be more effective than uniform spoilers to suppress the flow-induced cavity resonance of vehicles with open sunroofs. In this study, a few mechanisms possibly involved in buffeting suppression from notched spoilers were investigated experimentally and numerically. One objective was to investigate the spatial coherence and phase of the wall pressure fluctuations downstream of notched spoilers in comparison with the same quantities for uniform spoilers. Another objective was to gather detailed measured data to allow the verification of computer simulations of the flow over the notched spoiler. Experiments were performed to measure the velocity and wall pressure fields downstream of spoilers mounted on the rigid floor of a closed test section wind tunnel for different spoiler heights. Efforts were made to reproduce the spoiler and wind tunnel geometry and boundary conditions of the experimental set-up in the numerical simulations.
Journal Article

Feedforward Harmonic Suppression for Noise Control of Piezoelectrically Driven Synthetic Jet Actuators

2023-05-08
2023-01-1042
Piezoelectrically driven Synthetic Jet Actuators (SJAs) are a class of pulsatile flow generation devices that promises to improve upon steady forced cooling methods in air flow generation, surface cleaning and heat transfer applications. Their acoustic emissions and vibrations, an intrinsic by-product of their operation, needs to be mitigated for applications in noise-sensitive contexts. Already used for aerodynamic control [1, 2], thrust vectoring [3], spray control [4], and heat transfer [5, 6], they are increasingly being considered for sensor lens cleaning in automobiles. In this study, the sound generation mechanisms of SJAs are discussed and an active noise reduction method is proposed and evaluated. Driven with a single frequency sinusoidal input, SJAs produce acoustic emissions at harmonic frequencies within the frequency range of speech communication.
X