Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

New Guidelines for Implementation of Structural Health Monitoring in Aerospace Applications

2013-09-17
2013-01-2219
The first cross-industry guidelines for the implementation of structural health monitoring for aerospace applications have been created as a SAE International Aerospace Recommended Practices document: SAE ARP 6461 ‘Guidelines for Implementation of Structural Health Monitoring on Fixed Wing Aircraft’ [1]. These guidelines have brought together manufacturers, operators / users, systems integrators, regulators, technology providers and researchers to produce information on the integration of SHM into aircraft maintenance procedures, generic requirements and advice on validation, verification and airworthiness. The take-up of SHM in the aerospace industry has been slow, in part due to the lack of accepted industry practices surrounding not just the technology itself (sensors and sensor systems) but also the associated issues arising from the introduction of new methods into aircraft maintenance.
Journal Article

The Effects of Porosity and Inclination on the Pressure Drop across Porous Screens and Honeycombs Used for Heat Exchanger Simulations in Wind Tunnel Studies

2013-07-15
2012-01-2340
The simulation of heat exchanger air flow characteristics in a sub-scale wind tunnel test requires an accurate representation of the full-scale pressure drop across the element. In practice this is normally achieved using laminations of various porous materials and honeycombs on the basis of experience and ad hoc data. In view of this, a series of measurements of the pressure drop, in both the near and far field, across screens with porosity (β) in the range 0.41 ≺ β ≺ 0.76 are reported. The aim being to establish a relationship between the porosity and the pressure drop characteristics of a given material at various angles of inclination to the free-stream flow. Furthermore, the effect of screen depth was investigated using honeycombs. This data will facilitate detailed design and accurate representation of the flow characteristics at sub scale.
Journal Article

Control System for a PEM Fuel Cell Powered Heavy Duty Tactical Mobility Truck with Auxiliary Power Generation Capabilities

2013-09-24
2013-01-2472
The incorporation of hydrogen fuel cells into heavy duty tactical mobility vehicles can bring about great opportunities in reducing the pollutant emissions of this kind of platforms (GVW > 30,000 kg). Furthermore the transportation of fuel to operational areas has become a key aspect for any deployment therefore optimal use of this resource is of paramount importance. Finally, it is also quite common for such platforms to serve additional purposes, besides freight delivery, such as powering external equipment (i.e. field hospitals or mobile artillery pieces). This work will describe the intelligent energy management system for a PEM Fuel Cell-Battery-Ultracapacitor Hybrid 8×8 heavy truck of the aforementioned weight class which also contemplates an internal electric/traction power generation unit. It will describe how the system optimizes the use of battery and hydrogen fuel energy while keeping system efficiency and performance at a maximum.
Journal Article

Application of Local Mechanical Tensioning and Laser Processing to Modify the Residual Stress State and Microstructural Features of Multi-Pass HSLA Steel

2015-04-14
2015-01-0604
In a multi-pass weld, the development of residual stress to a large extent depends on the response of the weld metal, heat affected zone and parent material to complex thermo-mechanical cycles during welding. Previous investigations on this subject mostly focused on mechanical tensioning or heat treatment to modify the residual stress distribution in and around the weld. In this research, microstructural refinement with modification of residual stress state was attempted by applying post weld cold rolling followed by laser processing. The hardening of the weld metal was evaluated after welding, post weld cold rolling and post weld cold rolling followed by laser processing. The residual stress was determined non-destructively by using neutron diffraction. Hardness results showed evidence of plastic deformation up to 4 mm below the weld surface.
Journal Article

A Global Optimal Energy Management System for Hybrid Electric off-road Vehicles

2017-03-28
2017-01-0425
Energy management strategies greatly influence the power performance and fuel economy of series hybrid electric tracked bulldozers. In this paper, we present a procedure for the design of a power management strategy by defining a cost function, in this case, the minimization of the vehicle’s fuel consumption over a driving cycle. To explore the fuel-saving potential of a series hybrid electric tracked bulldozer, a dynamic programming (DP) algorithm is utilized to determine the optimal control actions for a series hybrid powertrain, and this can be the benchmark for the assessment of other control strategies. The results from comparing the DP strategy and the rule-based control strategy indicate that this procedure results in approximately a 7% improvement in fuel economy.
Journal Article

Cyber-Physical System Based Optimization Framework for Intelligent Powertrain Control

2017-03-28
2017-01-0426
The interactions between automatic controls, physics, and driver is an important step towards highly automated driving. This study investigates the dynamical interactions between human-selected driving modes, vehicle controller and physical plant parameters, to determine how to optimally adapt powertrain control to different human-like driving requirements. A cyber-physical system (CPS) based framework is proposed for co-design optimization of the physical plant parameters and controller variables for an electric powertrain, in view of vehicle’s dynamic performance, ride comfort, and energy efficiency under different driving modes. System structure, performance requirements and constraints, optimization goals and methodology are investigated. Intelligent powertrain control algorithms are synthesized for three driving modes, namely sport, eco, and normal modes, with appropriate protocol selections. The performance exploration methodology is presented.
Journal Article

Mechanistic Model for the Breakup Length in Jet Atomization

2016-03-14
2016-01-9042
In jet atomization, breakup length is the length of the continuous jet segment, before its breakup to discontinuous droplets. Hydrodynamic instability theory, implemented in CFD codes, is often complemented by semi-empirical correlations for breakup length, which may limit parametric investigations. A basic mechanistic approach to the breakup length prediction, based on a simple momentum balance between the injected jet and the aerodynamic drag force due to the surrounding gas, which complements the classic hydrodynamic instability breakup mechanism, is suggested. This model offers a simple complementing mechanistic model. It is shown that obtained results compare well with published experiments, and with the established empirical correlation of Wu and Faeth (1995). A simplified version of the model, taking into account an inviscid hydrodynamic model is shown to maintain plausibility of breakup length predictions in fuel-injection relevant conditions.
Journal Article

Environmental Impact Assessment, on the Operation of Conventional and More Electric Large Commercial Aircraft

2013-09-17
2013-01-2086
Global aviation is growing exponentially and there is a great emphasis on trajectory optimization to reduce the overall environmental impact caused by aircraft. Many optimization techniques exist and are being studied for this purpose. The CLEAN SKY Joint Technology Initiative for aeronautics and Air transport, a European research activity run under the Seventh Framework program, is a collaborative initiative involving industry, research organizations and academia to introduce novel technologies to improve the environmental impact of aviation. As part of the overall research activities, “green” aircraft trajectories are addressed in the Systems for Green Operations (SGO) Integrated Technology Demonstrator. This paper studies the impact of large commercial aircraft trajectories optimized for different objectives applied to the on board systems.
Journal Article

Functional Mobility Testing: A Novel Method to Create Suit Design Requirements

2008-06-17
2008-01-1857
This study was performed to aide in the creation of design requirements for the next generation of space suits that more accurately describe the level of mobility necessary for a suited crewmember through the use of an innovative methodology utilizing functional mobility. A novel method was utilized involving the collection of kinematic data while 20 subjects (10 male, 10 female) performed pertinent functional tasks that will be required of a suited crewmember during various phases of a lunar mission. These tasks were selected based on relevance and criticality from a larger list of tasks that may be carried out by the crew. Kinematic data was processed through Vicon BodyBuilder software to calculate joint angles for the ankle, knee, hip, torso, shoulder, elbow, and wrist. Maximum functional mobility was consistently lower than maximum isolated mobility.
Journal Article

An Overview of the V&V of Flight-Critical Systems Effort at NASA

2011-10-18
2011-01-2560
As the US is getting ready for the Next Generation (NextGen) of Air Traffic System, there is a growing concern that the current techniques for verification and validation will not be adequate for the changes to come. The JPDO (in charge of implementing NextGen) has given NASA a mandate to address the problem and it resulted in the formulation of the V&V of Flight-Critical Systems effort. This research effort is divided into four themes: argument-based safety assurance, distributed systems, authority and autonomy, and, software intensive systems. This paper presents an overview of the technologies that will address the problem.
Journal Article

Application of Genetic Algorithm for Preliminary Trajectory Optimization

2011-10-18
2011-01-2594
The aviation sector has played a significant role in shaping the world into what it is today. The rapid growth of global economies and the corresponding sharp rise in the number of people now wanting to travel on business and for pleasure, has largely been responsible for the development of this industry. With a predicted rise in Revenue Passenger Kilometers (RPK) by over 150% in the next 20 years, the industry will correspondingly be a significant contributor to environmental emissions. Under such circumstances optimizing aircraft trajectories for lowered emissions will play a critical role amongst various other measures, in mitigating the probable environmental effects of increased air traffic. Aircraft trajectory optimization using evolutionary algorithms is a novel field and preliminary studies have indicated that a reduction in emissions is possible when set as objectives.
Journal Article

Robustness Testing of Real-Time Automotive Systems Using Sequence Covering Arrays

2013-04-08
2013-01-1228
Testing real-time vehicular systems challenges the tester to design test cases for concurrent and sequential input events, emulating unexpected user and usage profiles. The vehicle response should be robust to unexpected user actions. Sequence Covering Arrays (SCA) offer an approach which can emulate such unexpected user actions by generating an optimized set of test vectors which cover all possible t-way sequences of events. The objective of this research was to find an efficient nonfunctional sequence testing (NFST) strategy for testing the robustness of real-time automotive embedded systems measured by their ability to recover (prove-out test) after applying sequences of user and usage patterns generated by combinatorial test algorithms, considered as “noisy” inputs. The method was validated with a case study of an automotive embedded system tested at Hardware-In-the-Loop (HIL) level. The random sequences were able to alter the system functionality observed at the prove-out test.
Journal Article

Applying Design for Assembly Principles in Computer Aided Design to Make Small Changes that Improve the Efficiency of Manual Aircraft Systems Installations

2014-09-16
2014-01-2266
The installation of essential systems into aircraft wings involves numerous labour-intensive processes. Many human operators are required to perform complex manual tasks over long periods of time in very challenging physical positions due to the limited access and confined space. This level of human activity in poor ergonomic conditions directly impacts on speed and quality of production but also, in the longer term, can cause costly human resource problems from operators' cumulative development of musculoskeletal injuries. These problems are exacerbated in areas of the wing which house multiple systems components because the volume of manual work and number of operators is higher but the available space is reduced. To improve the efficiency of manual work processes which cannot yet be automated we therefore need to consider how we might redesign systems installations in the enclosed wing environment to better enable operator access and reduce production time.
Journal Article

Energy Finite Element Analysis Developments for Vibration Analysis of Composite Aircraft Structures

2011-05-17
2011-01-1734
The Energy Finite Element Analysis (EFEA) has been utilized successfully for modeling complex structural-acoustic systems with isotropic structural material properties. In this paper, a formulation for modeling structures made out of composite materials is presented. An approach based on spectral finite element analysis is utilized first for developing the equivalent material properties for the composite material. These equivalent properties are employed in the EFEA governing differential equations for representing the composite materials and deriving the element level matrices. The power transmission characteristics at connections between members made out of non-isotropic composite material are considered for deriving suitable power transmission coefficients at junctions of interconnected members. These coefficients are utilized for computing the joint matrix that is needed to assemble the global system of EFEA equations.
Technical Paper

An Evaluation of CFD for Modelling the Flow Around Stationary and Rotating Isolated Wheels

1998-02-01
980032
Navier-Stokes calculations for the flow around an isolated wheel have been performed. Both a stationary wheel on a fixed ground and a rotating wheel on a moving ground were considered. Extensive comparisons with experimental measurements of surface static pressure coefficient and wake total pressure are made. These show that CFD can give good qualitative results for the flow field around both stationary and rotating wheels. Highlighted are details about the separation process from the top of the wheel and the flow structure around the wheel contact area.
Technical Paper

Assessment of Silver Based Disinfection Technology for CEV and Future US Spacecraft

2007-07-09
2007-01-3258
Silver biocide offers a potential advantage over iodine, the current state-of-the-art in US spacecraft disinfection technology, in that silver can be safely consumed by the crew. As such, silver may reduce the overall complexity and mass of future spacecraft potable water systems, particularly those used to support long duration missions. A primary technology gap identified for the use of silver biocide is one of material compatibility. Wetted materials of construction are required to be selected such that silver ion concentrations can be maintained at biocidally effective levels.
Technical Paper

Effects of Relative Humidity on the Adsorption of Dichloromethane by Carbosieve SIII

2007-07-09
2007-01-3249
Carbosieve SIII was used to filter dichloromethane (DCM) from a simulated spacecraft gas stream. This adsorbent was tested as a possible commercial-off-the-shelf (COTS) filtration solution to controlling spacecraft air quality. DCM is a halocarbon commonly used in manufacturing for cleaning and degreasing and is a typical component of equipment offgassing in spacecraft. The performance of the filter was measured in dry and humid atmospheres. A known concentration of DCM was passed through the adsorbent at a known flow rate. The adsorbent removed dichloromethane until it reached the breakthrough volume. Carbosieve SIII exposed to dry atmospheric conditions adsorbed more DCM than when exposed to humid air. Carbosieve SIII is a useful thermally regenerated adsorbent for filtering DCM from spacecraft cabin air. However, in humid environments the gas passes through the filter sooner due to co-adsorption of additional water vapor from the atmosphere.
Technical Paper

Assessment of Silver Based Disinfection Technology for CEV and Future US Spacecraft: Microbial Efficacy

2007-07-09
2007-01-3142
This work describes the microbiological assessment and materials compatibility of a silver-based biocide as an alternative to iodine for the Crew Exploration Vehicle (CEV) and future spacecraft potable water systems. In addition to physical and operational anti-microbial counter-measures, the prevention of microbial growth, biofilm formation, and microbiologically induced corrosion in water distribution and storage systems requires maintenance of a biologically-effective, residual biocide concentration in solution and on the wetted surfaces of the system. Because of the potential for biocide depletion in water distribution systems and the development of acquired biocide resistance within microbial populations, even sterile water with residual biocide may, over time, support the growth and/or proliferation of bacteria that pose a risk to crew health and environmental systems.
Technical Paper

Testbed for Determining the Filtering Capacities of COTS Adsorbents

2007-07-09
2007-01-3137
A lab-scale testbed for screening and characterizing the chemical specificity of commercial “off-the-shelf” (COTS) polymer adsorbents was built and tested. COTS polymer adsorbents are suitable candidates for future trace contaminant (TC) control technologies. Regenerable adsorbents could reduce overall TC control system mass and volume by minimizing the amounts of consumables to be resupplied and stored. However, the chemical specificity of these COTS adsorbents for non-methane volatile organic compounds (NMVOCs) (e.g., methanol, ethanol, dichloromethane, acetone, etc) commonly found in spacecraft is unknown. Furthermore, the effect of humidity on their filtering capacity is not well characterized. The testbed, composed of a humidifier, an incubator, and a gas generator, delivers NMVOC gas streams to conditioned sorbent tubes.
Technical Paper

Preliminary Investigation of the Impact of Flight-Path Variability of Icing Conditions Upon the Critical Ice Shape

2007-09-24
2007-01-3333
The Cranfield Icing Research Tunnel was used to carry out a preliminary study whose objective was to identify whether or not the introduction of flight-path variability could generate accretions notably different to the critical ice shape. A reference (critical) ice shape was generated under conditions obtained from Appendix C before variability was applied, firstly to LWC and secondly to temperature. The approach is presented and selected results are introduced in this paper. Results show that ice accretions produced under variable conditions can be notably different to the reference profile, and are potentially more detrimental aerodynamically.
X