Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Experimental Apparatus for the PIV Validation of Gas-Dynamic and CFD Engine Models

2006-11-13
2006-32-0019
The single shot apparatus creates a pressure wave (compression or rarefaction) by releasing a pressure or vacuum from a blowdown cylinder. The wave is contrived to be representative of cylinder blowdown or the suction wave that emanates from an engine intake valve during induction. Generated waves may be fired into a quiescent pipe or system of pipes that represent the ducts found on an engine. The most significant features that distinguish the new apparatus from any previous are that it uses a poppet valve to release the wave and that the apparatus is largely automatic, enabling the generation of a new wave every 15 seconds or so. The particular version of the apparatus described here has been conceived to allow a low speed background flow to be maintained in the pipe system between waves. The purpose of this is to allow microscopic particles to be kept in suspension in the air to facilitate flow studies using Particle Image Velocimetry (PIV) or Laser Doppler Anemometry (LDA).
Technical Paper

Analysis of the Steady Flow Characteristics through a Poppet Valve

2004-03-08
2004-01-1676
This paper describes the flow characteristics in the near throat region of a poppet valve under steady flow conditions. An experimental and theoretical procedure was undertaken to determine the total pressure at the assumed throat region of the valve, and also at a downstream location. Experiments of this type can be used to accurately determine the flow performance of a particular induction system. The static pressure recovery was calculated from the near throat region of the valve to the downstream location and was shown to be dependent on valve lift. Total pressure profiles suggest that for this particular induction system, the majority of pressure loss occurs downstream of the valve for lift/diameter ratios up to 0.1, and upstream of the valve for lift/diameter ratios greater than 0.1.
Technical Paper

Computer Simulation of the Performance of a 1.9 Litre Direct Injection Diesel Engine

2002-03-04
2002-01-0070
Recent environmental legislation to reduce emissions and improve efficiency means that there is a real need for improved thermodynamic performance models for the simulation of direct-injection, turbocharged diesel engines, which are becoming increasingly popular in the automotive sector. An accurate engine performance simulation software package (VIRTUAL 4-STROKE) is employed to model a benchmark automotive 1.9-litre Turbocharged Direct Injection (TDI) diesel engine. The accuracy of this model is scrutinised against actual test results from the engine. This validation includes comparisons of engine performance characteristics and also instantaneous gas dynamic and thermodynamic behaviour in the engine cylinders, turbocharger and ducting. It is seen that there is excellent agreement in all of these areas.
X