Refine Your Search

Topic

Author

Search Results

Journal Article

Particle Number and Size Distribution from a Small Displacement Automotive Diesel Engine during DPF Regeneration

2010-05-05
2010-01-1552
The aim of this work is to analyze particle number and size distribution from a small displacement Euro 5 common rail automotive diesel engine, equipped with a close coupled aftertreatment system, featuring a DOC and a DPF integrated in a single canning. In particular the effects of different combustion processes on PM characteristics were investigated, by comparing measurements made both under normal operating condition and under DPF regeneration mode. Exhaust gas was sampled at engine outlet, at DOC outlet and at DPF outlet, in order to fully characterize PM emissions through the whole exhaust line. After a two stage dilution system, sampled gas was analyzed by means of a TSI 3080 SMPS, in the range from 6 to 240 nm. Particle number and size distribution were evaluated at part load operating conditions, representative of urban driving.
Journal Article

Offline and Real-Time Optimization of EGR Rate and Injection Timing in Diesel Engines

2015-09-06
2015-24-2426
New methodologies have been developed to optimize EGR rate and injection timing in diesel engines, with the aim of minimizing fuel consumption (FC) and NOx engine-out emissions. The approach entails the application of a recently developed control-oriented engine model, which includes the simulation of the heat release rate, of the in-cylinder pressure and brake torque, as well as of the NOx emission levels. The engine model was coupled with a C-class vehicle model, in order to derive the engine speed and torque demand for several driving cycles, including the NEDC, FTP, AUDC, ARDC and AMDC. The optimization process was based on the minimization of a target function, which takes into account FC and NOx emission levels. The selected control variables of the problem are the injection timing of the main pulse and the position of the EGR valve, which have been considered as the most influential engine parameters on both fuel consumption and NOx emissions.
Journal Article

Numerical and Experimental Assessment of a Solenoid Common-Rail Injector Operation with Advanced Injection Strategies

2016-04-05
2016-01-0563
The selection and tuning of the Fuel Injection System (FIS) are among the most critical tasks for the automotive diesel engine design engineers. In fact, the injection strongly affects the combustion phenomena through which controlling a wide range of related issues such as pollutant emissions, combustion noise and fuel efficiency becomes feasible. In the scope of the engine design optimization, the simulation is an efficient tool in order to both predict the key performance parameters of the FIS, and to reduce the amount of experiments needed to reach the final product configuration. In this work a complete characterization of a solenoid ballistic injector for a Light-Duty Common Rail system was therefore implemented in a commercially available one-dimensional computational software called GT-SUITE. The main phenomena governing the injector operation were simulated by means of three sub-models (electro-magnetic, hydraulic and mechanical).
Journal Article

Combustion Prediction by a Low-Throughput Model in Modern Diesel Engines

2011-04-12
2011-01-1410
A new predictive zero-dimensional low-throughput combustion model has been applied to both PCCI (Premixed Charge Compression Ignition) and conventional diesel engines to simulate HRR (Heat Release Rate) and in-cylinder pressure traces on the basis of the injection rate. The model enables one to estimate the injection rate profile by means of the injection parameters that are available from the engine ECU (Electronic Control Unit), i.e., SOI (Start Of main Injection), ET (Energizing Time), DT (Dwell Time) and injected fuel quantities, taking the injector NOD (Nozzle Opening Delay) and NCD (Nozzle Closure Delay) into account. An accumulated fuel mass approach has been applied to estimate Qch (released chemical energy), from which the main combustion parameters that are of interest for combustion control in IC engines, such as, SOC (Start Of Combustion), MFB50 (50% of Mass Fraction Burned) have been derived.
Journal Article

Analysis of Performance and Emissions of an Automotive Euro 5 Diesel Engine Fuelled with B30 from RME and JME

2011-04-12
2011-01-0328
The effects of using a B30 blend of ultra-low sulfur diesel and two different Fatty Acid Methyl Esters (FAME) obtained from both Rapeseed Methyl Ester (RME) and Jatropha Methyl Ester (JME) in a Euro 5 small displacement passenger car diesel engine on both full load performance and part load emissions have been evaluated in this paper. In particular the effects on engine torque were firstly analyzed, for both a standard ECU calibration (i.e., without any special tuning for the different fuel characteristics) and for a specifically adjusted ECU calibration obtained by properly increasing the injected fuel quantities to compensate for the lower LHV of the B30: with the latter, the same torque levels measured under diesel operation could be observed with the B30 blend too, with lower smoke levels, thus highlighting the potential for maintaining the same level of performance while achieving substantial emissions benefits.
Technical Paper

1-D Modeling and Room Temperature Experimental Measurements of the Exhaust System Backpressure: Limits and Advantages in the Prediction of Backpressure

2008-04-14
2008-01-0676
It is well known that backpressure is one of the important parameters to be minimised during the exhaust system development. Unfortunately, during the first phases of an engineering process of a new engine, engine prototypes are not available yet. Due to this the exhaust system backpressure is generally evaluated using simulation software, and/or measuring the backpressure by a flow rig test at room temperature. Goal of this paper is to compare exhaust backpressure results obtained respectively: i) at the room temperature flow rig; ii) at the engine dyno bench; iii) by simulation with one of the most common 1D fluidodynamics simulation tool (Gt-Power). A correlation of the three different techniques is presented.
Technical Paper

Optimization of a Variable Geometry Exhaust System Through Design of Experiment

2008-04-14
2008-01-0675
Experimental Design methodologies have been applied in conjunction with objective functions for the optimization of the internal geometry of a rear muffler of a subcompact car equipped with a 1.4 liters displacement s.i. turbocharged engine. The muffler also features an innovative variable geometry design. The definition of an objective function summarising the silencing capability of the muffler has been driving the optimization process with the aim to reduce the tailpipe noise while maintaining acceptable pressure losses and complying with severe space constraints. Design of Experiments techniques for the reduction of experimental plans have been shown to be extremely effective to find out the optimum values of the design parameters, allowing a remarkable reduction of the time required by the design process in comparison with full factorial designs.
Technical Paper

A Proposal of an Oil Pan Optimization Methodology

2010-04-12
2010-01-0417
In the powertrain technology, designers must be careful on oil pan design in order to obtain the best noise, vibration and harshness (NVH) performance. This is a great issue for the automotive design because they affect the passengers' comfort. In order to reduce vibration and radiated noise in powertrain assembly, oil pan is one of the most critical components. The high stiffness of the oil pan permits to move up the natural modes of the component and, as a consequence, reduce the sound emission of the component itself. In addition, the optimized shape of the component allows the increase of natural frequency values of the engine assembly. The aim of this study is the development of a methodology to increase the oil pan stiffness starting from a sketch of the component and adding material where it is needed. The methodology is tested on a series of different models: they have the same geometry but different materials.
Technical Paper

NEEXT : New Electric Experience For Traction

2010-04-12
2010-01-0034
Electric scooters are suited to mobility in zones with environmental traffic limitations, and particularly for city centers with very poor room for parking. Aim of this paper is the illustration of the performance that can be obtained from a purposely designed electric scooter. The features of the main components of the scooter driveline: battery package, converter, motor and control will be described.
Technical Paper

CFD Analysis and Experimental Validation of the Inlet Flow Distribution in Close Coupled Catalytic Converters

2003-10-27
2003-01-3072
The unsteady flow effects in two different close coupled catalytic converters were investigated in order to achieve a better understanding of the steady state experimental tests which are usually performed to evaluate a flow distribution. Firstly the validity of a CFD model was achieved through a comparison of some steady state simulations with the results of HWA experimental measurements. Several different formulations of the uniformity index, that were found in literature, were then compared, trying to highlight the strengths and shortcomings of each one. Further information was derived from a comparison of the two catalysts that were tested to achieve a general methodology that would be useful for future analysis. Finally, a new approach to evaluate the flow distribution using a steady state analysis was proposed by comparing the results of a transient simulation that was obtained for a whole engine cycle.
Technical Paper

Electro-Hydraulic Braking System Modelling and Simulation

2003-10-19
2003-01-3336
The first step toward a braking system ‘by wire’ is Electro-Hydraulic Braking System (EHB). The paper describes a method to evaluate through virtual experimentation the actual improvement in vehicle behaviour, from the point of view of both handling and comfort, including also pedal feeling, due to EHB. The first step consisted in modelling the hydraulic unit, comprehensive of sensors. Then it was conceived a control logic devoted to medium-low intensity braking manoeuvres, without ABS intervention, to determine an optimal braking force distribution and pedal feeling depending on the manoeuvre. A failsafe strategy, complete of on board diagnosis, to prevent dangerous system behaviour in the eventuality of a component failure was carried out and tested. Finally, EHB wheel pressure sensors were used to improve both ABS performance, increasing the adherence estimation, and Vehicle Dynamics Control (VDC) performance, through a more precise actuation.
Technical Paper

A Prototype Vehicle for Powertrain and Chassis Control System Tests

2011-06-09
2011-37-0028
A prototype vehicle (PV) is equipped to test powertrain and active chassis systems with innovative control strategies for safety and energy saving. Additional sensors installed on-board allow the measurement and estimation of new information useful to the vehicle dynamic control. The PV was based on a serial production passenger car with Electronic Stability Control (ESC). Testing activities on Controller Area Network (CAN) and ESC Electronic Control Unit (ECU) are carried out to compare the vehicle dynamic performance obtainable using serial production rather than customized control strategies, while maintaining the same hardware. The PV is also utilized to provide reverse engineering analysis about the implemented control strategy for the ESC working in serial production mode.
Technical Paper

Effects of Rapeseed and Jatropha Methyl Ester on Performance and Emissions of a Euro 5 Small Displacement Automotive Diesel Engine

2011-09-11
2011-24-0109
The effects of using neat and blended (30% vol.) biodiesel, obtained from Rapeseed Methyl Ester (RME) and Jatropha Methyl Ester (JME), in a Euro 5 small displacement passenger car diesel engine have been evaluated in this paper. The impact of biodiesel usage on engine performance at full load was analyzed for a specifically adjusted ECU calibration: the same torque levels measured under diesel operation could be obtained, with lower smoke levels, thus highlighting the potential for maintaining the same level of performance while achieving substantial emissions benefits. In addition, the effects of biodiesel blends on brake-specific fuel consumption and on engine-out exhaust emissions (CO₂, CO, HC, NOx and smoke) were also evaluated at 6 different part load operating conditions, representative of the New European Driving Cycle. Emissions were also measured at the DPF outlet, thus providing information about after-treatment devices efficiencies with biodiesel.
Technical Paper

Experimental Investigation on the Effects on Performance and Emissions of an Automotive Euro 5 Diesel Engine Fuelled with B30 from RME and HVO

2013-04-08
2013-01-1679
The effects of using blended renewable diesel fuel (30% vol.), obtained from Rapeseed Methyl Ester (RME) and Hydrotreated Vegetable Oil (HVO), in a Euro 5 small displacement passenger car diesel engine have been evaluated in this paper. The hydraulic behavior of the common rail injection system was verified in terms of injected volume and injection rate with both RME and HVO blends fuelling in comparison with commercial diesel. Further, the spray obtained with RME B30 was analyzed and compared with diesel in terms of global shape and penetration, to investigate the potential differences in the air-fuel mixing process. Then, the impact of a biofuel blend usage on engine performance at full load was first analyzed, adopting the same reference calibration for all the tested fuels.
Technical Paper

Effective Vehicle Sideslip Angle Estimation using DVS Technology

2014-04-01
2014-01-0084
The vehicle sideslip angle is one of the most important variables for evaluating vehicle dynamics. The potential value of such a variable for obtaining significant improvements over current stability control systems is widely recognized. However, its direct measurement requires the use of complex and expensive devices which cannot be used in production cars. Large research efforts has been devoted to the problem of estimating the sideslip angle from other variables currently measured by standard Electronic Stability Control (ESC) sensors. However, at the best of author's knowledge, until now no application to production cars is known. In this paper, a new sideslip angle estimation technology is presented.
Technical Paper

State of the Art and Future Trends of Electrification in Agricultural Tractors

2022-09-16
2022-24-0002
Hybrid and electric powertrains are experiencing a consistent growth in the automotive field demonstrating their effectiveness in reducing pollutant emissions especially in urban areas. Recently these technologies started to be investigated in the field of work machineries as possible solution to meet increasingly stricter regulations on pollutant emissions. The construction field was the first to recognize the benefits of a partial or total electrification of a work machinery. Nowadays, the consolidation of the technology allowed for its consistent diffusion in the more conservative agricultural field where manufacturers are struggling to meet emissions regulations without losing in terms of work performance. Tractors manufacturers are the most affected actors because of the difficulty to integrate bulky gas aftertreatment systems on board of their vehicle.
Technical Paper

Co-Simulation of a Specialized Tractor for Autonomous Driving in Orchards

2022-09-16
2022-24-0025
The concept of autonomous driving is becoming increasingly familiar in the automotive and “in-door” automation systems fields. Furthermore, the industrial development is focusing its efforts on industry 4.0, whose some main features are data transfer, programming, systems interconnection and automation. The agricultural sector just recently has experienced the first examples of autonomous agricultural vehicles, although agricultural mechanization has reached a good level of automation. Indeed, many examples of automatic machineries are already present in the market such as little robots for the execution of some operations. This work focuses on modelling and simulation of a self-driving orchard tractor. The main goal was to reproduce the behaviour of the specialized vehicle, moving in an orchard or a vineyard and conducting automatic or semi-automatic operations.
Technical Paper

A Methodology to Investigate the Dynamic Characteristics of ESP and EHB Hydraulic Units

2006-04-03
2006-01-1281
The paper deals with the Hardware-In-the-Loop based methodology which was adopted to evaluate the dynamic characteristics of Electronic Stability Program (ESP) and Electro-Hydraulic Brake (EHB) components. Firstly, it permits the identification of the time delays due to the hardware of the actuation system. Secondly, the link between the hardware of the hydraulic unit and a vehicle model running in real time permits the objective evaluation of the performance induced by the single components of different hydraulic units in terms of vehicle dynamics. The paper suggests the main parameters and tests which can help the car manufacturer in evaluating ESP hydraulic units, without expensive road tests.
Technical Paper

Development of an Improved Fractal Model for the Simulation of Turbulent Flame Propagation in SI Engines

2005-09-11
2005-24-082
The necessity for further reductions of in-cylinder pollutant formation and the opportunity to minimize engine development and testing times highlight the need of engine thermodynamic cycle simulation tools that are able to accurately predict the effects of fuel, design and operating variables on engine performance. In order to set up reliable codes for indicated cycle simulation in SI engines, an accurate prediction of heat release is required, which, in turn, involves the evaluation of in-cylinder turbulence generation and flame-turbulence interaction. This is generally pursued by the application of a combustion fractal model coupled with semi-empirical correlations of available geometrical and thermodynamical mass-averaged quantities. However, the currently available correlations generally show an unsatisfactory capability to predict the effects of flame-turbulence interaction on burning speed under the overall flame propagation interval.
Technical Paper

Measurements of Time-Resolved Mass Injection Rates for a Multi-Hole and an Outward Opening Piezo GDI Injector

2015-04-14
2015-01-0929
Time-resolved mass injection rates of an outward opening piezo-actuated and a solenoid actuated multi-hole GDI injector were measured to investigate (1) the influence of both hardware and software settings and (2) the influence on the injection rates from a wide range of operational parameters and (3) discuss limitations and issues with this measurement technique. The varied operating parameters were fuel pressure, back-pressure, electrical pulse width, single/double injection and injection frequency. The varied hardware/software parameters were injector protrusion, upstream fuel pressure condition and the cut-off frequency of the software's low-pass filter. Signal quality was found to be dependent on both hardware and software settings, especially the cut-off frequency of the low-pass filter. Measurements with high signal quality were not possible for back-pressures lower than 0.5 MPa.
X