Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Experimental Investigation of UAS Rotors and Ice Protection Systems in Appendix C Icing Conditions

2023-06-15
2023-01-1380
If an Unmanned Aerial Systems (UAS) encounters icing conditions during flight, those conditions might result in degraded aerodynamic performance of the overall UAS. If the UAS is not reacting appropriately, safety critical situations can quickly arise. Thereby, the rotors, respectively the propellers of the UAS are especially susceptible due to the increased airflow through their domain and the corresponding higher impingement rate of supercooled water droplets. In many cases, the UAS cannot be properly operated if the rotors are not fully functional, as they are a vital component. The FFG/BMK funded research and development project “All-weather Drone” is investigating the icing phenomenon on UAS rotors for a 25 kg maximum take-off weight (MTOW) multirotor UAS and evaluating the feasibility of possible technical ice detection and anti-/de-icing solutions.
Technical Paper

Experimental Investigation of a CRM65 Wingtip Mockup under Appendix C and Appendix O Icing Conditions

2023-06-15
2023-01-1386
Research institutes and companies are currently working on 3D numerical icing tools for the prediction of ice shapes on an international level. Due to the highly complex flow situation, the prediction of ice shapes on three-dimensional surfaces represents a challenge. An essential component for the development and subsequent validation of 3D ice accretion codes are detailed experimental data from ice shapes accreted on relevant geometries, like wings of a passenger aircraft for example. As part of the Republic of Austria funded research project JOICE, a mockup of a wingtip, based on the National Aeronautics and Space Administration common research model CRM65 was designed and manufactured. For further detailed investigation of electro-thermal de-icing systems, various heaters and thermocouples were included.
X