Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Optimal Control of Mass Transport Time-Delay Model in an EGR

2020-04-14
2020-01-0251
This paper touches on the mass transport phenomenon in the exhaust gas recirculation (EGR) of a gasoline engine air path. It presents the control-oriented model and control design of the burned gas ratio (BGR) transport phenomenon, witnessed in the intake path of an internal combustion engine (ICE), due to the redirection of burned gases to the intake path by the low-pressure EGR (LP-EGR). Based on a nonlinear AMESim® model of the engine, the BGR in the intake manifold is modeled as a state-space (SS) output time-delay model, or alternatively as an ODE-PDE coupled system, that take into account the time delay between the moment at which the combusted gases leave the exhaust manifold and that at which they are readmitted in the intake manifold. In addition to their mass transport delay, the BGRs in the intake path are also subject to state and input inequality constraints.
Technical Paper

Intake System Diagnosis for Diesel Engine with Dual-Loop EGR

2012-04-16
2012-01-0904
This paper proposes a method to detect an intake manifold leakage for a Diesel engine with a dual loop EGR system. The intake manifold leak has a strong impact on the engine performances by changing the intake manifold burned gas ratio. This fault is analyzed according to the control structure used and also according to the EGR operating mode. The paper proposes a diagnosis algorithm to detect the intake manifold leak in sequential or simultaneous use of the two EGR paths. The sensors considered are the mass air flow meter, the intake manifold pressure sensor, the exhaust equivalence ratio sensor and the differential pressure sensor (across the HP EGR valve). The diagnosis is based on a criteria that uses the redundancy between these sensors and air system models or estimators. The diagnosis threshold depends on the engine operating conditions as well as the sensor or model dispersions.
X