Refine Your Search

Topic

Author

Search Results

Technical Paper

New Approaches to Electronic Throttle Control

1991-02-01
910085
An electronic control of throttle angle is required for safety systems like traction control (ASR) and for advanced engine management systems with regard to further improvements of driving comfort and fuel economy. For applications, in which only ASR is required, two versions of a new traction control actuator (TCA) have been developed. Their function is based on controlling the effective length of the bowden cable between the accelerator pedal and the throttle. Besides retaining the mechanical linkage to the throttle, the concept has no need for a pedal position sensor, which is necessary for a drive-by-wire system. Design and performance of both actuators are described and their individual advantages are compared. Moreover, the communication of the system with ASR and its behaviour with regard to vehicle dynamics are illustrated.
Technical Paper

Antilock Braking Systems (ABS) for Commercial Vehicles - Status 1990 and Future Prospects

1990-10-01
901177
The paper begins with an overview of the history of ABS for commercial vehicles followed by a brief description of the technology of the BOSCH ABS at the time it went into mass production in 1981. Subsequently it describes the field experiences with ABS including the experiences of drivers and operators. These experiences are reflected in the equipment which BOSCH offers today. Additional functions such as ASR (traction control) have been integrated. The paper provides an overview of the functions available today and their implementation. The paper concludes with a discussion on potential continued developments and an attempt to describe the systems which will be required by the mid 9os.
Technical Paper

More Safety with Vehicle Stability Control

2007-01-28
2007-01-2759
Since introduction of safety belts in the 70s and airbags in the early 80s, these passive safety technologies have become standard in many markets. Remarkable improvement in passive safety, efforts to alter driver behaviour and infrastructural programmes have led to substantial reductions of fatalities in many regions, although the absolute number of highway fatalities increased e.g. in the USA in 2002 to the highest level since 1990. Electronic Stability Control (ESC) as an active safety technology assists the driver to keep the vehicle on the intended track and thereby actively prevents accidents. In 1995 Bosch was the first supplier to introduce ESC for the Mercedes-Benz S-Class, where it is marketed as ESP® - Electronic Stability Program. Since then, Bosch has produced more than 30 million systems worldwide. Many studies have now confirmed that ESC can prevent a vehicle from skidding or rolling over in nearly all driving situations.
Technical Paper

Luminance Measurement, Contrast Sensitivity, Homogeneity: New Approaches of Defining the Quality of Headlamps

1998-02-23
980324
The conventional measurements to describe the photometric quality of headlamps usually only comprise the luminous flux and the illuminance (resp. the luminous intensity) in several measuring points given by Type Approval Legislation. Practically, these photometric measurements do not describe the visual impression of a headlamp light distribution sufficiently, neither in lab nor in real street geometry. With the clear outer lens headlamps introduced recently, filament images are projected directly onto the screens or streets, thus giving new impulses to research. Starting from the established photometric practice, other types of measurements and physiological fundamentals will be discussed. The basic tools to make physical measurement and physiological impression comparable, e.g. in terms of homogeneity, are shown.
Technical Paper

ASR-Traction Control, State of the Art and Some Prospects

1990-02-01
900204
Closed loop vehicle control comprising of the driver, the vehicle and the environment is now achieved by the automatic wheel slip control combination of ABS and ASR. To improve directional control during acceleration, the Robert Bosch Corporation has introduced five ASR-Systems into series production. In one system, the electronic control unit works exclusively with the engine management system to assure directional control. In two other systems, brake intervention works in concert with throttle intervention. For this task, it was necessary to develop different highly sophisticated hydraulic units. The other systems improve traction by controlling limited slip differentials. The safety concept for all five systems includes two redundant micro controllers which crosscheck and compare input and output signals. A Traction Control System can be achieved through a number of torque intervention methods.
Technical Paper

Standardization and Cost Optimization of ABS Ecus

1998-10-19
98C004
ABS has proven to be a contribution to active safety. The introduction of traction control (TC) in 1986 and even more significantly, the introduction of vehicle dynamics control (VDC) in 1995 have been further milestones in this field. The functionality of these systems (ABS, TC, VDC) is mainly determined by the electronic control unit (ECU). A system supplier who is to provide an ECU-platform concept including a large functionality, while meeting customer specific requirements at an optimized price, needs standardization strategies. This paper describes a standardization concept for an ABS ECU, beginning with the basic ABS HW and SW design and the extension to TC and VDC. It also shows the degree of flexibility, the benefits for the vehicle manufacturer and the possible cost optimization for the system supplier.
Technical Paper

Thermal Simulation within the Brake System Design Process

2002-10-06
2002-01-2587
During the acquisition phase brake system supplier have to make predictions on a system's thermal behavior based on very few reliable parameters. Increasing system knowledge requires the usage of different calculation models along with the progress of the project. Adaptive modeling is used in order to integrate test results from first prototypes or benchmark vehicles. Since changes in the brake force distribution have a great impact on the simulation results fading conditions of the linings have to be integrated as well. The principle of co-simulation is used in order to use the actual brake force distribution of the system.
Technical Paper

Integration of Time Triggered CAN (TTCAN_TC)

2002-03-04
2002-01-0263
Time Triggered CAN (TTCAN) is an extension of the well-known CAN protocol, introducing to CAN networks time triggered communication and a system wide global network time with high precision. Time Triggered CAN has been accepted as international standard ISOCD11898-4. The time triggered communication is built upon the unchanged standard CAN protocol. This allows a software implementation of the time triggered function of TTCAN, based on existing CAN ICs. The high precision global time however requires a hardware implementation. A hardware implementation also offers additional functions like time mark interrupts, a stopwatch, and a synchronization to external events, all independent of software latency times. The TTCAN testchip (TTCAN_TC) is a standalone TTCAN controller and has been produced as a solution to the hen/egg problem of hardware availability versus tool support and research.
Technical Paper

Traction Control (ASR) Using Fuel-Injection Suppression - A Cost Effective Method of Engine-Torque Control

1992-02-01
920641
Traction control (ASR) is the logical ongoing development of the antilock braking system (ABS). Due to the high costs involved though, the widespread practice of reducing the engine power by electronic throttle control (or electronic enginepower control) has up to now prevented ASR from becoming as widely proliferated as ABS. A promising method has now been developed in which fuel-injection suppression at individual cylinders is used as a low-price actuator for a budget-priced ASR. First of all, an overview of the possibilities for influencing wheel-torque by means of intervention at the engine and/or brake as a means of reducing driven wheel slip is presented. Then, the system, the control strategy, and the demands on the electronic engine-management system with sequential fuel injection are discussed. The system's possibilities and its limitations are indicated, and fears of damaging effects on the catalytic converter are eliminated.
Technical Paper

The Role of Climatic Conditions on Disc Brake Noise

2006-10-08
2006-01-3209
Since the brake colloquium in 2004 the role of climatic conditions and their relations to noise occurrence, sound pressure level and friction coefficient level is widely discussed in the US and European working groups on brake noise. A systematic study has been started to investigate the influence of relative humidity, absolute humidity and temperature on brake noise and the corresponding friction coefficient level. In this study an enormous effort was taken to keep the influences of the brake parameters, e.g. lining material, Eigenfrequencies and dimensions of the different components as small as possible to investigate the climatic influence only. Strategic humidity and temperature levels were tested according to the Mollier-Entropy-Enthalpy-Diagram which are corresponding to the seasons in the various international regions. A regression analysis evaluates the correlation and the influence of each parameter to noise and friction coefficient level.
Technical Paper

Flex Fuel Software Maintainability Improvement: A Case Study

2016-10-25
2016-36-0214
Many software functions currently available in the engine control units have been developed for several years (decades in some cases), reengineered or adapted due to new requirements, what may add to their inherent complexity an unnecessary complication. This paper deals with the study and implementation of a software reengineering strategy for the embedded domain, which is in transfer from research department to product development, here applied to improve maintainability of flex fuel functions. The strategy uses the SCODE “Essential Analysis”, an approach for the embedded system domain. The method allows to reduce the system complexity to the unavoidable inherent problem complexity, by decomposing the system into smaller sub problems based on its essential physics. A case study was carried out to redesign a function of fuel adaptation. The analysis was performed with the support of a tool, which covers all the phases of the method.
Technical Paper

Comparison of a State of the Art Hydraulic Brake System with a Decentralized Hydraulic Brake System Concept for Electric Vehicles

2017-09-17
2017-01-2515
The ongoing changes in the development of new power trains and the requirements due to driver assistance systems and autonomous driving could be the enabler for completely new brake system configurations. The shift in the brake load collective has to be included in the systems requirements for electric vehicles. Many alternative concepts for hydraulic brake systems, even for decentralized configurations, can be found in the literature. For a decentralized system with all state of the art safety functionalities included, four actuators are necessary. Therefore, the single brake module should be as cost-effective as possible. Previous papers introduced systems which are for example based on plunger-like concepts, which are very expensive and heavy due to the needed gearing and design. In this paper a comparison between a state of the art hydraulic brake system using an electromechanical brake booster, and a completely new decentralized hydraulic brake concept is presented.
Technical Paper

ISO 26262 Release Just Ahead: Remaining Problems and Proposals for Solutions

2011-04-12
2011-01-1000
The release of ISO 26262 is only about three months after the 2011 World Congress. However, there are still some contentious aspects that can introduce challenges or cause a disproportionate effort. In this paper, we will show how to avoid these problems. ISO 26262 provides a detailed method for classifying the Automotive Safely Integrity Level (ASIL) of in-vehicle electronic systems. However, the ASIL value for a specific function/product can vary significantly across the industry. Applying a lower level than the industry norm can cause substantial liability problems. Applying a higher level can initiate an “arms race” with competitors. This is particularly true if there are no vehicle-related reasons for choosing the higher level or if it doesn't make the product any safer. To encourage international harmonization, this paper will define ASIL classifications for the main automotive components. Most functions/products are currently being developed using parts of existing products.
Technical Paper

The X-By-Wire Concept: Time-Triggered Information Exchange and Fail Silence Support by New System Services

1998-02-23
980555
This paper presents the conceptual model and the fundamental mechanisms for software development in the context of the Brite-EuRam project Safety Related Fault Tolerant Systems in Vehicles (nick-named X-By-Wire). The objective of the X-By-Wire project is to achieve a framework for the introduction of safety related fault tolerant electronic systems without mechanical backup in vehicles. To achieve the required level of fault-tolerance, an X-By-Wire system must be designed as a distributed system comprising a number of fault-tolerant units connected by a reliable real-time communication system. For the communication system, the time-triggered TTP/C real-time communication protocol was selected. TTP/C provides fault-tolerance message transfer, state synchronization, reliable detection of node failures, a global time base, and a distributed membership service. Redundancy is used for masking failures of individual processor nodes and hardware peripherals.
Technical Paper

CARTRONIC - An Open Architecture for Networking the Control Systems of an Automobile

1998-02-23
980200
The car industry has reached a point where electronic systems, which were so far essentially autonomous, begin to grow together to a Car-Wide Web. The main driving force is the demand for more safety, security, and comfort implemented economically. Already various parties are working on control networks. In the long run, vehicle motion and dynamic systems, safety, security, comfort as well as mobile multimedia systems will integrate and reach out for the vision of accident-free, comfortable, and well-informed driving. As a foundation for a Car-Wide Web, Bosch is developing an open architecture called CARTRONIC. The essence of CARTRONIC is to define structuring rules, modeling rules and patterns for total, integrated control of vehicles. The rules and patterns allow the mapping of high-level functions onto several physical implementations, for instance one logical description of functional connections could be created for cars with different equipment packages.
Technical Paper

ABS5 and ASR5: The New ABS/ASR Family to Optimize Directional Stability and Traction

1993-03-01
930505
In 1978, Bosch was the first supplier on the market to offer full-function antilock braking systems. In 1993, six years will have passed since Bosch delivered the first traction control system for passenger cars. In the meantime, a considerable amount of experience has been gained through ongoing development and testing. This experience enabled us to define the requirements for directional stability, optimum control strategy, maximum usage of the entire spectrum of drive torque intervention possibilities, and optimized hydraulics for automatic brake intervention. The result is Bosch ABS/ASR5, which in now being introduced to the market. This new ABS/ASR family is designed in modules, which offers high flexibility in function and assembly. Systems are available with traction improvement, or with optimized directional stability and traction. Each version is adapted to the needs of the vehicle drive layout, and adaptable to customer requirements.
Technical Paper

A Non Contact Strain Gage Torque Sensor for Automotive Servo Driven Steering Systems

1994-03-01
940629
Tapping of one or more torques (ranges 10 Nm and 60 Nm) on the steering column for the purpose of servo control must satisfy high accuracy requirements on the one hand and high safety requirements on the other hand. A suggestion for developing a low-cost solution to this problem is described below: Strain gages optimally satisfy both these requirements: However, for cost reasons, these are not applied directly to the steering column but to a prefabricated, flat steel rod which is laser welded to the torque rod of the steering column. The measuring direction of the strain gages is under 45° to the steering column axis. The strain gages are either vacuum metallized onto the support rod as a thin film or laminated in a particularly low-cost way by means of a foil-type intermediate carrier.
Technical Paper

ABS5.3: The New and Compact ABS5 Unit for Passenger Cars

1995-02-01
950757
The transition from the multi-component ABS2 design to the one housing concept of ABS5.0 represented a significant step in improving the ABS unit. ABS5.3 is the successor of ABS5.0 to achieve a highly compact, light weight inexpensive design, for the broad use of ABS in all passenger cars and light trucks. New technologies applied are the staking technique for hydraulic components, the use of microhybrid electronics design and solenoid coils being integrated within the attached electronic control unit. The unit can be manufactured in global alliance achieved by simultaneous engineering, applying CAD, FE-analysis, flow calculation and simulation, noise analysis and quality assurance which includes FMEA, error simulation, durability tests and the dry testing concept. The ABS5.3 design can be easily expanded to Traction Control (ASR).
Technical Paper

AutoMoDe - Notations, Methods, and Tools for Model-Based Development of Automotive Software

2005-04-11
2005-01-1281
This paper describes the first results from the AutoMoDe project (Automotive Model-based Development), where an integrated methodology for model-based development of automotive control software is being developed. The results presented include a number of problem-oriented graphical notations, based on a formally defined operational model, which are associated with system views for various degrees of abstraction. It is shown how the approach can be used for partitioning comprehensive system designs for subsequent implementation-related tasks. Recent experiences from a case study of an engine management system, specific issues related to reengineering, and the current status of CASE-tool support are also presented.
Technical Paper

Safety and Performance Enhancement: The Bosch Electronic Stability Control (ESP)

2004-10-18
2004-21-0060
In spite of improvements in passive safety and efforts to alter driver behavior, the absolute number of highway fatalities in 2002 increased to the highest level since 1990 in the US. ESP is an active safety technology that assists the driver to keep the vehicle on the intended path and thereby helps to prevent accidents. ESP is especially effective in keeping the vehicle on the road and mitigating rollover accidents which account for over 1/3 of all fatalities in single vehicle accidents. In 1995 Bosch was the first supplier to introduce electronic stability control (ESC) for the Mercedes-Benz S-Class sedan. Since then, Bosch has produced more than 10 million systems worldwide which are marketed as ESP - Electronic Stability Program. In this report Bosch will present ESP contributions to active safety and the required adaptations to support four wheel driven vehicles and to mitigate rollover situations.
X