Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Sensor Data Fusion for Active Safety Systems

2010-10-19
2010-01-2332
Active safety systems will have a great impact in the next generation of vehicles. This is partly originated by the increasing consumer's interest for safety and partly by new traffic safety laws. Control actions in the vehicle are based on an extensive environment model which contains information about relevant objects in vehicle surroundings. Sensor data fusion integrates measurements from different surround sensors into this environment model. In order to avoid system malfunctions, high reliability in the interpretation of the situation, and therefore in the environment model, is essential. Hence, the main idea of data fusion is to make use of the advantages of using multiple sensors and different technologies in order to fulfill these requirements, which are especially high due to autonomous interventions in vehicle dynamics (e. g. automatic emergency braking).
Journal Article

Identification of Object Impact Location and Bumper Stiffness Curve for Pedestrian Protection System

2011-04-12
2011-01-0083
A method for identification of object impact location and bumper stiffness curve is presented in this paper. The method calculates an offset distance of object impact based on intrusions obtained from three accelerometers mounted in the bumper fascia. The method also evaluates a center strength based on an absolute sum of acceleration. A characteristic line has been introduced in a two-dimensional domain consisting of intrusion-based offset and center strength. When test data are projected onto the characteristic line, an improved object impact location can be achieved. An intrusion curve over offset distance is obtained for impact tests striking at different locations with the same object and same speed. Then, a bumper stiffness curve can be identified by taking a reciprocal of the intrusion curve. This study shows a bumper stiffness curve can be used for an impact object classification for the pedestrian protection system.
Journal Article

Steady-State Combustion Development of a Downsized Multi-Cylinder Engine with Range Extended HCCI/SACI Capability

2013-04-08
2013-01-1655
This paper focuses on the combustion development portion of the Advanced Combustion Controls Enabling Systems and Solutions (ACCESS) project, a joint research project partially funded by a Department of Energy grant. The main goal of the project is to improve fuel economy in a gasoline fueled light-duty vehicle by 30% while maintaining similar performance and meeting SULEV emission standards for the Federal Test Procedure (FTP) cycle. In this study, several combustion modes Spark Ignited (SI), Homogeneous Charge Compression Ignition (HCCI), Spark- Assisted Compression Ignition (SACI)) were compared under various conditions (naturally aspirated, boosted, lean, and stoichiometric) to compare the methods of controlled auto-ignition on a downsized, boosted multi-cylinder engine with an advanced valvetrain system capable of operating under wide negative valve overlap (NVO) conditions.
Journal Article

Assessment of Cooled Low Pressure EGR in a Turbocharged Direct Injection Gasoline Engine

2015-04-14
2015-01-1253
The use of Low Pressure - Exhaust Gas Recirculation (EGR) is intended to allow displacement reduction in turbocharged gasoline engines and improve fuel economy. Low Pressure EGR designs have an advantage over High Pressure configurations since they interfere less with turbocharger efficiency and improve the uniformity of air-EGR mixing in the engine. In this research, Low Pressure (LP) cooled EGR is evaluated on a turbocharged direct injection gasoline engine with variable valve timing using both simulation and experimental results. First, a model-based calibration study is conducted using simulation tools to identify fuel efficiency gains of LP EGR over the base calibration. The main sources of the efficiency improvement are then quantified individually, focusing on part-load de-throttling of the engine, heat loss reduction, knock mitigation as well as decreased high-load fuel enrichment through exhaust temperature reduction.
Journal Article

Connected Car Architecture and Virtualization

2016-04-05
2016-01-0081
Connectivity has become an essential need for daily device users. With the car projected to be the “ultimate mobile device”, connectivity modules will eventually be mainstream in every car. Network providers are expanding their infrastructure and technology to accommodate the connected cars. Besides making voice and emergency calls the connected car will be sharing data with telematics service providers, back end systems and other vehicles. This trend will increase vehicle modules, complexity, entry points and vulnerabilities. This paper will present the current connected car architectures. The paper will present current architectural issues of the connected car and its vulnerabilities. The paper will present a new proposed architecture for the future connected car that enhances efficiency and security.
Journal Article

Gasoline Fuel Injector Spray Measurement and Characterization - A New SAE J2715 Recommended Practice

2008-04-14
2008-01-1068
With increasingly stringent emissions regulations and concurrent requirements for enhanced engine thermal efficiency, a comprehensive characterization of the automotive gasoline fuel spray has become essential. The acquisition of accurate and repeatable spray data is even more critical when a combustion strategy such as gasoline direct injection is to be utilized. Without industry-wide standardization of testing procedures, large variablilities have been experienced in attempts to verify the claimed spray performance values for the Sauter mean diameter, Dv90, tip penetration and cone angle of many types of fuel sprays. A new SAE Recommended Practice document, J2715, has been developed by the SAE Gasoline Fuel Injection Standards Committee (GFISC) and is now available for the measurement and characterization of the fuel sprays from both gasoline direct injection and port fuel injection injectors.
Journal Article

SI Engine Hardware and Software Design for High Power, Low Emission Applications

2009-04-20
2009-01-0617
High technology, spark ignition direct injection (SIDI), engines are currently capable of achieving optimum horsepower and ULEV emissions levels. However, to meet the requirements of modern automotive powertrains, the task of increasing power density, improving fuel economy and reaching SULEV2 emissions is much more challenging. To achieve this, direct injection (DI) fuel systems offer the greatest precision and flexibility for engine fuel control. Features like high pressure start and improved catalyst heating, through multiple injections per combustion cycle, produce low engine-out emissions without the need for a secondary air injection system. This paper describes the analytical and experimental work done to achieve SULEV emissions levels for a twin-turbocharged derivative of General Motors (GM) high feature V6 engine.
Journal Article

Ethanol Detection in Flex-Fuel Direct Injection Engines Using In-Cylinder Pressure Measurements

2009-04-20
2009-01-0657
A method for detection of ethanol content in fuel for an engine equipped with direct injection (DI) is presented. The methodology is based on in-cylinder pressure measurements during the compression stroke and exploits the different charge cooling properties of ethanol and gasoline. The concept was validated using dynamometer data of a 2.0L DI turbocharged engine with variable valve timing (VVT). An algorithm was developed to process the experimental data and generate a residue from the complex cycle-to-cycle in-cylinder pressure evolution which captures the charge cooling effect. The experimental results show that there is a monotonic correlation between the residues and the fuel ethanol percentage in the majority of the cases. However, the correlation varies for different engine operating parameters; such as, speed, load, valve timing, fuel rail pressure, intake and exhaust temperature and pressure.
Journal Article

On-System Engine Cooling Fan Measurement as a Tool for Optimizing Cooling System Airflow Performance and Noise

2011-04-12
2011-01-1169
When designing the vehicle cooling system, accurate knowledge of the required airflow through the heat exchangers is necessary for proper specification of the cooling fan, the heat exchangers, and the associated electrical loads. The simplest method of expressing the engine cooling fan performance requirement is based on the “open air” performance curve measured on the airflow test chamber, excluding effects of the heat exchangers and vehicle environment. However, the difference between open air and on-system airflow performance and noise (installed on the heat exchangers) can be significant due to the influence of the heat exchangers, fan shroud, and downstream blockage on the airflow through the fan. If these factors are neglected in the evaluation of the cooling fan, incorrect specification of the fan performance can result.
Journal Article

Understanding the Dynamic Evolution of Cyclic Variability at the Operating Limits of HCCI Engines with Negative Valve Overlap

2012-04-16
2012-01-1106
An experimental study is performed for homogeneous charge compression ignition (HCCI) combustion focusing on late phasing conditions with high cyclic variability (CV) approaching misfire. High CV limits the feasible operating range and the objective is to understand and quantify the dominating effects of the CV in order to enable controls for widening the operating range of HCCI. A combustion analysis method is developed for explaining the dynamic coupling in sequences of combustion cycles where important variables are residual gas temperature, combustion efficiency, heat release during re-compression, and unburned fuel mass. The results show that the unburned fuel mass carries over to the re-compression and to the next cycle creating a coupling between cycles, in addition to the well known temperature coupling, that is essential for understanding and predicting the HCCI behavior at lean conditions with high CV.
Journal Article

Assessment of Automatic Volume Leveling for Automotive Sound Systems

2013-04-08
2013-01-0162
This paper presents an assessment of competing algorithms for normalizing volume levels between tracks and/or sources in an automotive infotainment system. Portable media players such as smartphones and iPod® devices are extremely popular for listening to music collections or streaming content from the Internet. The lack of normalization is a source of dissatisfaction if the user experiences significant changes in audio level between tracks. Several commercially available algorithms exist to solve this problem. This research includes a double-blind listening test comparing an audio sample processed with the different leveling algorithms to an unprocessed reference. The listener preference rating is recorded and results indicate which algorithm is preferred.
Journal Article

Ensuring Audio Signal Quality in Automotive Infotainment Systems

2013-04-08
2013-01-0163
In automotive infotainment systems, multiple types of digital audio signals are usually present. Some come from internal sources, such as a CD or USB stick, and some come from external sources, such as an internet stream or digital radio. These sources usually have different sample-rates, and may also be different from one or more system sample-rates. Managing and transporting these signals throughout the system over different sample-rate domains require detailed upfront architecture analysis and correct system design to ensure signal quality is maintained to the desired level. Incorrect design can add significant user-perceivable noise and distortion. This paper examines the key analysis factors, the effects of poor design and the approaches for achieving robust signal handling and ensuring desired signal quality.
Journal Article

Design of a 4-Cylinder GTDI Engine with Part-Load HCCI Capability

2013-04-08
2013-01-0287
This paper focuses on the engine design portion of the Advanced Combustion Controls Enabling Systems and Solutions (ACCESS) project, a joint research project partially funded by a Department of Energy grant. The main goal of the project is to improve fuel economy in a gasoline fueled light-duty vehicle by 25% while maintaining similar performance and meeting SULEV emission standards. A Cadillac CTS with a high-feature naturally-aspirated 3.6L V6 engine was chosen as the baseline vehicle. To achieve the target fuel economy improvement over the baseline engine configuration, gasoline turbocharged direct-injection (GTDI) technology was utilized for engine downsizing in combination with part-load lean homogeneous charge compression ignition (HCCI) operation for further fuel economy gains. The GM 2.0L I4 GTDI Ecotec engine was used as the platform for the basis of this design.
Journal Article

A New Automotive Air Conditioning System Simulation Tool Developed in MATLAB/Simulink

2013-04-08
2013-01-0850
Accurate evaluation of vehicles' transient total power requirement helps achieving further improvements in vehicle fuel efficiency. When operated, the air-conditioning (A/C) system is the largest auxiliary load on a vehicle, therefore accurate evaluation of the load it places on the vehicle's engine and/or energy storage system is especially important. Vehicle simulation models, such as "Autonomie," have been used by OEMs to evaluate vehicles' energy performance. However, the load from the A/C system on the engine or on the energy storage system has not always been modeled in sufficient detail. A transient A/C simulation tool incorporated into vehicle simulation models would also provide a tool for developing more efficient A/C systems through a thorough consideration of the transient A/C system performance. The dynamic system simulation software MATLAB/Simulink® is frequently used by vehicle controls engineers to develop new and more efficient vehicle energy system controls.
Technical Paper

A Decentralized Time- and Energy-Optimal Control Framework for Connected Automated Vehicles: From Simulation to Field Test

2020-04-14
2020-01-0579
The implementation of connected and automated vehicle (CAV) technologies enables a novel computational framework for real-time control aimed at optimizing energy consumption with associated benefits. In this paper, we implement an optimal control framework, developed previously, in an Audi A3 etron plug-in hybrid electric vehicle, and demonstrate that we can improve the vehicle’s efficiency and travel time in a corridor including an on-ramp merging, a speed reduction zone, and a roundabout. Our exposition includes the development, integration, implementation and validation of the proposed framework in (1) simulation, (2) hardware-in-the-loop (HIL) testing, (3) connectivity enabled virtual reality based bench-test, and (4) field test in Mcity. We show that by adopting such inexpensive, yet effective process, we can efficiently integrate and test the control framework, establish proper connectivity and data transmission between different modules of the system, and reduce uncertainty.
Journal Article

(R)evolution of E/E Architectures

2015-04-14
2015-01-0196
This paper presents an overview of the evolution & revolution of automotive E/E architectures and how we at Bosch, envision the technology in the future. It provides information on the bottlenecks for current E/E architectures and drivers for their evolution. Functionalities such as automated driving, connectivity and cyber-security have gained increasing importance over the past few years. The importance of these functionalities will continue to grow as these cutting-edge technologies mature and market acceptance increases. Implementation of these functionalities in mainstream vehicles will demand a paradigm shift in E/E architectures with respect to in-vehicle communication networks, power networks, connectivity, safety and security. This paper expounds on these points at a system level.
Technical Paper

High-Speed Imaging Study on the Effects of Internal Geometry on High-Pressure Gasoline Sprays

2020-09-15
2020-01-2111
High-pressure gasoline injection can improve combustion efficiency and lower engine-out emissions; however, the spray characteristics of high-pressure gasoline (>500 bar) are not well known. Effects of different injector nozzle geometry on high-pressure gasoline sprays were studied using a constant volume chamber. Five nozzles with controlled internal flow features including differences in nozzle inlet rounding, conicity, and outlet diameter were investigated. Reference grade gasoline was injected at fuel pressures of 300, 600, 900, 1200, and 1500 bar. The chamber pressure was varied using nitrogen at ambient temperature and pressures of 1, 5, 10, and 20 bar. Spray development was recorded using diffuse backlit shadowgraph imaging methods.
Technical Paper

New Designs and Concepts for Vehicle Entertainment Systems

2006-11-21
2006-01-2828
The need for entertainment is a constant desire since human beans started to use vehicles for short and long distance travel. The radio, a home entertainment revolution, was the first one to be incorporated. The information and entertainment that initially brought the radio to the vehicles also started a major change on the interior and electrical systems. This revolution will require changes in vehicle design to accommodate the new concepts and features.
Technical Paper

Radiated Noise Prediction of Air Induction Systems Using Filter Seal Modeling and Coupled Acoustic-Structural Simulation Techniques

2007-04-16
2007-01-0253
In this paper, an analytical procedure for prediction of shell radiated noise of air induction systems (AIS) due to engine acoustic excitation, without a prototype and physical measurement, is presented. A set of modeling and simulation techniques are introduced to address the challenges to the analytical radiated noise prediction of AIS products. A filter seal model is developed to simulate the unique nonlinear stiffness and damping properties of air cleaner boxes. A finite element model (FEM) of the AIS assembly is established by incorporating the AIS structure, the proposed filter seal model and its acoustic cavity model. The coupled acoustic-structural FEM of the AIS assembly is then employed to compute the velocity frequency response of the AIS structure with respect to the air-borne acoustic excitations.
Technical Paper

User Experience in the U.S. and Germany of In-Vehicle Touch Screens with Integrated Haptic and Auditory Feedback

2007-04-16
2007-01-0451
Touch screens provide substantial benefits as a control and display system but still have some disadvantages. The availability of haptic (tactile) technology allows touch screens to function similarly to traditional mechanical controls. Two studies were undertaken to investigate the addition of haptic feedback as well as auditory feedback on user perceptions of the touch screen experience. The first study was conducted in a desktop setting and the second study was conducted with the touch screen integrated in a vehicle. In both studies, participants assessed four different types of feedback conditions: visual feedback only (V), auditory and visual feedback (AV), haptic and visual feedback (HV), and auditory, haptic, and visual feedback combined (AHV). The results of these studies support the claim that individuals strongly prefer touch screen implementations that incorporate haptic elements and also provide insights on regional differences in their perception.
X