Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

A Model for the Unsteady Motion of Pollutant Particles in the Exhaust System of an I.C. Engine

2003-03-03
2003-01-0721
The measurement of the various pollutant species (HC, CO, NO, etc.) has become one of the main issues in internal combustion engine research. This interest concerns not only their quantitative measurement but also the study of the mechanism of their formation. In fact, pollutant species concentration can be used as an indicator for the combustion characteristics. For instance, it enables the determination of a lean or a rich combustion, the percentage of EGR, etc. The purpose of this research is to investigate the behavior of pollutant gas particles in the first part of an engine exhaust system through a detailed study of the unsteady flow in the exhaust pipe. The results are intended to designate the appropriate sensor positions which ensure accurate measurement results. This investigation wants to track an inert component in the exhaust system, namely the NO gas.
Technical Paper

Performance and Operational Characteristics of a Hybrid Vehicle Powered by Fuel Cells and Supercapacitors

2003-03-03
2003-01-0418
The paper presents experimental results of a fuel cell powered electric vehicle equipped with supercapacitors. This hybrid vehicle is part of an ongoing collaboration between the Paul Scherrer Institute (PSI, Switzerland), the Swiss Federal Institute of Technology (ETHZ), and several industrial partners. It is equipped with a fuel cell system with a nominal power of 48 kW and with supercapacitors that have a storage capacity of 360 Wh. Extensive tests have been performed on a dynamometer and on the road to investigate the operating ability. The highlights of these tests were the successful trial runs across the Simplon Pass in the Swiss Alps in January 2002. The fuel cell system consists of an array of six stacks with 125 cells each and an active area of 200 cm2. The stacks are electrically connected as two parallel strings of three stacks each in series in order to match the voltage requirement of the powertrain.
Technical Paper

Exhaust-Gas Dynamics Model for Identification Purposes

2003-03-03
2003-01-0368
The burned gas remaining in the cylinder after the exhaust stroke of an SI engine, i.e. the residual gas fraction, has a significant influence on both the torque production and the composition of the exhaust gas. This work investigates the behavior of the residual gas fraction over the entire operating range of the engine. A combined discrete-continuous linear model is identified, which describes the dynamic effects of the gas composition from when the gases enter the cylinder up to the measurement with a specific sensor. In this investigation, that sensor is a fast NO measurement device. The system is modelled by three elements in series: the in-cylinder mixing, the transport delay, and the exhaust mixing. The resulting model contains three elements in series connection: the in cylinder mixing, the transport delay, and the exhaust gas mixing. The model is able to calculate the fuel mass entering the cylinder during a fuel injection transient.
X