Refine Your Search

Topic

Affiliation

Search Results

Journal Article

Combination of Test with Simulation Analysis of Brake Groan Phenomenon

2014-04-01
2014-01-0869
During a car launch, the driving torque from driveline acts on brake disk, and may lead the pad to slip against the disk. Especially with slow brake pedal release, there is still brake torque applies on the disk, which will retard the rotation of disk, and under certain conditions, the disk and pad may stick again, so the reciprocated stick and slip can induce the noise and vibration, which can be transmitted to a passenger by both tactile and aural paths, this phenomenon is defined as brake groan. In this paper, we propose a nonlinear dynamics model of brake for bidirectional, and with 7 Degrees of Freedom (DOFs), and phase locus and Lyapunov Second Method are utilized to study the mechanism of groan. Time-frequency analysis method then is adopted to analyze the simulation results, meanwhile a test car is operated under corresponding conditions, and the test signals are sampled and then processed to acquire the features.
Technical Paper

3-Dimensional Numerical Simulation on CuO Nanofluids as Heat Transfer Medium for Diesel Engine Cooling System

2020-04-14
2020-01-1109
CuO-water nanofluids was utilized as heat transfer medium in the cooling system of the diesel engine. By using CFD-Fluent software, for 0.5%, 1%, 3% and 5% mass concentration of nanofluids, 3-dimensional numerical simulation about flow and heat transfer process in the cooling system of engine was actualized. According to stochastic particle tracking in turbulent flow, for solid-liquid two phase flow discrete phase, the moving track of nanoparticles was traced. By this way, for CuO nanoparticles of different mass concentration nanofliuds in the cooling jacket of diesel engine, the results of the concentration distribution, velocity distribution, internal energy variation, resident time, total heat transfer and variation of total pressure reduction between inlet and outlet were ascertained.
Technical Paper

In Cycle Pre-Ignition Diagnosis and Super-Knock Suppression by Employing Ion Current in a GDI Boosted Engine

2020-04-14
2020-01-1148
In this paper, a low-speed pre-ignition (LSPI) diagnostic strategy is designed based on the ion current signal. Novel diagnostic and re-injection strategies are proposed to suppress super-knock induced by pre-ignition within the detected combustion cycle. A parallel controller system that integrates a regular engine control unit (ECU) and CompactRIO (cRIO) from National Instruments (NI) is employed. Based on this system, the diagnostic and suppression strategy can be implemented without any adaptions to the regular ECU. Experiments are conducted on a 1.5-liter four-cylinder, turbocharged, direct-injected gasoline engine. The experimental results show two kinds of pre-ignition, one occurs spontaneously, and the other is induced by carbon deposits. Carbon deposits on the spark plug can strongly interfere with the ion current signal. By applying the ion current signal, approximately 14.3% of spontaneous and 90% of carbon induced pre-ignition cycles can be detected.
Technical Paper

Characteristics of Auto-Ignition for Lubricants and Lubricant/Gasoline Based on an Innovative Single Droplet Test System

2020-04-14
2020-01-1428
Due to the advantages of low weight, low emissions and good fuel economy, downsized turbocharged gasoline direct injection (GDI) engines are widely-applied nowadays. However, Low-Speed Pre-Ignition (LSPI) phenomenon observed in these engines restricts their improvement of performance. Some researchers have shown that auto-ignition of lubricant in the combustion chamber has a great effect on the LSPI frequency. To study the auto-ignition characteristics of lubricant, an innovative single droplet auto-ignition test system for lubricant and its mixture is designed and developed, with better accuracy and effectiveness. The experiments are carried out by hanging lubricant droplets on the thermocouple node under active thermo-atmosphere provided by a small “Dibble burner”. The auto-ignition process of lubricant droplets is recorded by a high-speed camera.
Journal Article

Experimental Study of the Plasticity Responses of TRIP780 Steel Subjected to Strain-Path Changes

2016-04-05
2016-01-0363
The work-hardening response of TRIP780 steel subjected to strain-path changes was investigated using two-stage tension experiments. Large specimens were prestrained and then sub-sized samples were subjected to tension along various directions. The influence of strain-path changes on flow stress and work hardening performance was discussed in detail. The specific plastic work was calculated to compare the kinematic hardening behaviour after strain-path changes. The results showed that transient hardening was observed for TRIP780 sheets subjected to orthogonal strain-path change. The strain-hardening exponent (n-value) was influenced by prestraining levels and the strain path. The n-value exhibited a greater decrease under an orthogonal strain-path change. Prestraining can delay the onset of high work hardenability of TRIP steels. It is meaningful for the safety design of vehicles.
Journal Article

Study of the Combustion Characteristics of a HCCI Engine Coupled with Oxy-Fuel Combustion Mode

2017-03-28
2017-01-0649
The present work proposed to implement oxy-fuel combustion mode into a homogeneous charge compression ignition engine to reduce complexity in engine emissions after-treatment and lower carbon dioxide emission. The combination of oxy-fuel combustion mode with homogeneous charge compression ignition engine can be further optimized by the utilization of direct high temperature and pressure water injection to improve cycle performance. A retrofitted conventional diesel engine coupled with port fuel injection and direct water injection is utilized in this study. A self-designed oxygen and carbon dioxide mixture intake system with flexible oxygen fraction adjustment ability is implemented in the test bench to simulate the adoption of exhaust gas recirculation. Water injection system is directly installed in the combustion chamber with a modified high speed solenoid diesel injector.
Technical Paper

Parameter Identification for a Proton Exchange Membrane Fuel Cell Model

2020-04-14
2020-01-0858
The proton exchange membrane fuel cell (PEMFC) system has emerged as the state-of-art power source for the electric vehicle, but the widespread commercial application of fuel cell vehicle is restricted by its short service life. An enabling high accuracy model holds the key for better understanding, simulation, analysis, subsystem control of the fuel cell system to extract full power and prolong the lifespan. In this paper, a quasi-dynamic lumped parameters model for a 3kW stack is introduced, which includes filling-and-emptying volume sub-models for the relationships between periphery signals and internal states, static water transferring sub-model for the membrane, and empirical electrochemical sub-model for the voltage response. Several dynamic experiments are carried out to identify unknown parameters of the model.
Technical Paper

IMM-KF Algorithm for Multitarget Tracking of On-Road Vehicle

2020-04-14
2020-01-0117
Tracking vehicle trajectories is essential for autonomous vehicles and advanced driver-assistance systems to understand traffic environment and evaluate collision risk. In order to reduce the position deviation and fluctuation of tracking on-road vehicle by millimeter-wave radar (MMWR), an interactive multi-model Kalman filter (IMM-KF) tracking algorithm including data association and track management is proposed. In general, it is difficult to model the target vehicle accurately due to lack of vehicle kinematics parameters, like wheel base, uncertainty of driving behavior and limitation of sensor’s field of view. To handle the uncertainty problem, an interacting multiple model (IMM) approach using Kalman filters is employed to estimate multitarget’s states. Then the compensation of radar ego motion is achieved, since the original measurement is under the radar polar coordinate system.
Technical Paper

Optimized Control of Dynamical Engine-Start Process in a Hybrid Electric Vehicle

2020-04-14
2020-01-0268
Engine start while driving is one of the most typical and frequent work conditions for hybrid vehicles. Engine start has very significant impact on the driving comfort. Engine start, especially a dynamical engine start, have high control requirements regarding control time, torque output and riding comfort. In some hybrid transmissions such as P2, engine is cranked and synchronized through wet clutch slipping. Because clutch pressure control has time-varying delay and estimation precision of engine torque by ECU (Engine Control Unit) is poor, conventional PID controller is unable to meet the high requirements of control quality. A new control algorithm is proposed in this paper to cope with all these challenges. The new control algorithm is based on LADRC (Linear Active Disturbance Rejection Controller) and is improved through combination with Smith predictor and Adaline network. LADRC is adopted to reduce negative effects of poor precision of engine torque.
Journal Article

Differential Drive Assisted Steering Control for an In-wheel Motor Electric Vehicle

2015-04-14
2015-01-1599
For an electric vehicle driven by four in-wheel motors, the torque of each wheel can be controlled precisely and independently. A closed-loop control method of differential drive assisted steering (DDAS) has been proposed to improve vehicle steering properties based on those advantages. With consideration of acceleration requirement, a three dimensional characteristic curve that indicates the relation between torque and angle of the steering wheel at different vehicle speeds was designed as a basis of the control system. In order to deal with the saturation of motor's output torque under certain conditions, an anti-windup PI control algorithm was designed. Simulations and vehicle tests, including pivot steering test, lemniscate test and central steering test were carried out to verify the performance of the DDAS in steering portability and road feeling.
Technical Paper

Characteristics of Particulates and Exhaust Gases Emissions of DI Diesel Engine Employing Common Rail Fuel System Fueled with Bio-diesel Blends

2008-06-23
2008-01-1834
In this paper, characteristics of gas emission and particle size distribution are investigated in a common rail diesel engine fueled with biodiesel blends. Gas emission and particle size distribution are measured by AVL FTIR - SESAM and SMPS respectively. The results show that although biodiesel blends would result in higher NOx emissions, characteristics of NOx emissions were also dependent on the engine load for waste cooking oil methyl ester. Higher blend concentration results in higher NO2 emission after two diesel oxidation catalyst s (DOC). A higher blend concentration leads to lower CO and SO2 emissions. No significant difference of Alkene emission is found among biodiesel blends. The particle size distributions of diesel exhaust aerosol consist of a nucleation mode (NM) with a peak below 50N• m and an accumulation mode with a peak above 50N • m. B100 will result in lower particulates with the absence of NM.
Technical Paper

Effect of Additives on Diesel Spray Flames in a Controllable Active Thermo-Atmosphere

2008-04-14
2008-01-0931
The active components, such as OH and their concentrations in the coflow, have a strong effect on the combustion process of diesel fuel spray flames in the Controllable Active Thermo-Atmosphere (CATA), which then will affect the soot incandescence of the spray flames. CO2 and H2O2, the additives which have contrary effect on the concentration of the active components, were mixed separately into the thermo-atmosphere before the jet spray were issued into the coflow, which changed the boundary condition around the central jet and influenced the combustion characteristics and soot incandescence. The combustion characteristics such as ignition delay and flame liftoff height of the central spray flames are measured and the linkage between these two parameters is investigated at different coflow temperatures.
Technical Paper

An Interactive Racing Car Driving Simulator Based on TCP/IP

2009-05-13
2009-01-1609
Real-time interaction between a driver and the simulator is problematic. In this study, the racing car driving simulator has been established, which is composed of the following functional components: Motion Controller, Simview, Scenario Editor, Application Programmer Interface (APIs) and Crash Simulation. With TCP/IP protocol, the Motion Controller receives driver's manipulation, road unevenness and crash situation of Simview, then generates motion streams that reflecting the current conditions, and sends them to Simview and to the hydraulic platform. Furthermore, by detecting and analyzing general vehicle two-dimensional impact, a kind of complete and applicable calculation method has been established, and complicated vehicle impacts can be analyzed accurately. This racecar driving simulator places a racing driver in a interactive environment, and provides the driver with high-fidelity motion, visual, auditory, and force feedback cues.
Technical Paper

Fuel Injection Optimization during Engine Quick Start by Means of Cycle-by-Cycle Control Strategy for HEV Application

2009-11-02
2009-01-2718
Engine-off strategy are popular used in hybrid electric vehicles (HEV) for fuel saving. The engine of an HEV will start and stop frequently according to the road condition. In order to obtain excellent fuel economy and emissions performance, the fuel injection during engine quick start should be optimized. In this paper, the characteristic of mixture formation and the HC emissions at the first 5 cycles which contribute the most HCs were investigated. After the analysis of mixture preparation during start process, the HC emissions during engine quick start were optimized by means of cycle-by-cycle fuel injection control strategy. The fuel mixture concentration during start-up process fluctuates more dramatically under hot start condition. Typically, the mixture at 4th and 5th cycle is over-riched. Based on the original engine calibration, the fuel injection at the initial 5 cycles was optimized respectively.
Technical Paper

Misfiring Control in Current Cycle at Engine Start Employing Ion Sensing Technology

2009-11-02
2009-01-2713
In this paper a method of misfiring control in current cycle at engine start is presented. With this novel method, the high HC emissions of gasoline engine employed in traditional or hybrid electrical vehicles will be avoided. By the feedback of ion current signal, misfire phenomenon is identified within 30 degrees crank angle after spark plug ignited. Then, the ignition coil will be recharged and the plug sparked again to promote air fuel mixture oxidation and deplete the unburned hydrocarbon produces in exhaust gas. On the other hand, too late ignition will not always result in normal combustion, a kind of reaction similar with slow oxidation also occurs in such case.
Technical Paper

Predicting the Head-Neck Posture and Muscle Force of the Driver Based on the Combination of Biomechanics with Multibody Dynamics

2017-03-28
2017-01-0407
Biomechanics and biodynamics are increasingly focused on the automotive industry to provide comfortable driving environment, reduce driver fatigue, and improve passenger safety. Man-centered conception is a growing emphasis on the open design of automobile. During the long-term driving, occupational drivers are easily exposed to the neck pain, so it is important to reduce the muscle force load and its fatigue, which are not usually considered quantitatively during traditional ergonomics design, so standards related are not well developed to guide the vehicle design; On the other hand, the head-neck models are always built based on the statics theory, these are not sufficient to predict the instantaneous variation of the muscle force. In this paper, a head-neck model with multi DOFs is created based on multibody dynamics. Firstly, a driver-vehicle-road model considering driver multi-rigid body model, vehicle subsystems, and different ranks of pavement is built.
Technical Paper

A Study on Optimization of the Ride Comfort of the Sliding Door Based on Rigid-Flexible Coupling Multi-Body Model

2017-03-28
2017-01-0417
To solve the problem of serious roller wear and improve the smoothness of the sliding door motion process, the rigid-flexible coupling multi-body model of the vehicle sliding door was built in ADAMS. Force boundary conditions of the model were determined to meet the speed requirement of monitoring point and time requirement of door opening-closing process according to the bench test specification. The results of dynamic simulation agreed well with that of test so the practicability and credibility of the model was verified. In the optimization of the ride comfort of the sliding door, two different schemes were proposed. The one was to optimize the position of hinge pivots and the other was to optimize the structural parameters of the middle guide. The impact load of lead roller on middle guide, the curvature of the motion trajectory and angular acceleration of the sliding door centroid were taken as optimization objectives.
Technical Paper

Correlation Analysis of Interior and Exterior Wind Noise Sources of a Production Car Using Beamforming Techniques

2017-03-28
2017-01-0449
Beamforming techniques are widely used today in aeroacoustic wind tunnels to identify wind noise sources generated by interaction between incoming flow and the test object. In this study, a planar spiral microphone array with 120 channels was set out-of-flow at 1:1 aeroacoustic wind tunnel of Shanghai Automotive Wind Tunnel Center (SAWTC) to test exterior wind noise sources of a production car. Simultaneously, 2 reference microphones were set in vehicle interior to record potential sound source signal near the left side view mirror triangle and the signal of driver’s ear position synchronously. In addition, a spherical array with 48 channels was set inside the vehicle to identify interior noise sources synchronously as well. With different correlation methods and an advanced algorithm CLEAN-SC, the ranking of contributions of vehicle exterior wind noise sources to interested interior noise locations was accomplished.
Technical Paper

Interactive Modes F-ANP Evaluation for In-Vehicle Secondary Tasks

2016-09-14
2016-01-1890
With the development of automotive HMI and mobile internet, many interactive modes are available for drivers to fulfill the in-vehicle secondary tasks, e.g. dialing, volume adjustment, music playing. For driving safety and drivers’ high expectation for HMI, it is urgent to effectively evaluate interactive mode with good efficiency, safety and good user experience for each secondary tasks, e.g. steering wheel buttons, voice control. This study uses a static driving simulation cockpit to provide driving environment, and sets up a high-fidelity driving cockpit based on OKTAL SacnerStudio and three-dimensional modeling technology. The secondary tasks supported by HMI platform are designed by customer demands research. The secondary task test is carried out based on usability test theory, and the influence on driving safety by different interactive modes is analyzed.
Technical Paper

Analysis of Driver Emergency Steering Behavior Based on the China Naturalistic Driving Data

2016-09-14
2016-01-1872
Based on the emergency lane change cases extracted from the China naturalistic driving data, the driving steering behavior divides into three phases: collision avoidance, lateral movement and steering stabilization. Using the steering primitive fitting by Gaussian function, the distribution of the duration time, the relationship between steering wheel rate and deflection were analyzed in three phases. It is shown that the steering behavior essentially is composed of steering primitives during the emergency lane-change. However, the combination of the steering primitives is different according to the specific steering constraints in three phases. In the collision avoidance phase, a single steering primitive with high peak is used for the fast steering; in the lateral movement and stabilization phase, a combination of two or even more steering primitives is built to a more accurate steering.
X