Viewing 1 to 15 of 15
Technical Paper
Hongwei Zhang, Liangjin Gui, Zijie Fan
Abstract Road test simulation on test rig is widely used in the automobile industry to shorten the development circles. However, there is still room for further improving the time cost of current road simulation test. This paper described a new method considering both the damage error and the runtime of the test on a multi-axial test rig. First, the fatigue editing technique is applied to cut the small load in road data to reduce the runtime initially. The edited road load data could be reproduced on a multi-axial test rig successfully. Second, the rainflow matrices of strains on different proving ground roads are established and transformed into damage matrices based on the S-N curve and Miner rules using a reduction method. A standard simulation test for vehicle reliability procedure is established according to the proving ground schedule as a target to be accelerated.
Technical Paper
Liang Li, Jian Song, Cai Yang, Yanxia Zhou, Liangyao Yu
A tire force estimation algorithm is proposed for vehicle dynamic stability control (DSC) system to protect the vehicle from deviation of the normal dynamics attitude and to realize the improved dynamics stability in limited driving conditions. The developed algorithm is based on the theoretical analysis of all the subsystems of the active brake control in DSC system and modulation in DSC, and the robustness is achieved by a compensation method using nonlinear filter in the real time control. The software-in-loop simulation using Matlab/AMEsim and the ground test in the real car show the validation of this method.
Technical Paper
Xiaolin Guo, Xuewu Ji, Yahui Liu
In this work, a speed-sensitive electronically controlled hydraulic power steering (ECHPS) system is analyzed. The use of an electro-hydraulic transducer and a hydraulic bypass in parallel with the hydraulic power steering system makes it possible to vary steering effort with vehicle speed. In order to research the dynamic responses of the vehicle with the ECHPS system during maneuvers, an ECHPS model and a vehicle handling model are developed. These models can be used for performance evaluation of the steering motion of the vehicles, and also for the design of new power steering system.
Technical Paper
Ji Xuewu, Liu Yahui, Gao Feng
Generally, noise will occur during steering with the hydraulic power steering system (hereinafter HPS). The noise producing in the rotary valve takes up a big proportion of the total one. To study the noise in the control valve, 2-D meshes of the flow field between the sleeve and the rotor were set up and a general CFD code-Fluent was used to analyze the flow inside the valve. The areas where the noise may be occurred were shown and some suggestions to silence the noise were given.
Technical Paper
Rui Chen, Yugong Luo
This paper developed a control system for the auxiliary power unit (APU) in off-road series hybrid electric special vehicle. A control system configuration was designed according to the requirements of the high voltage system in series hybrid electric special vehicle. Then optimal engine operating areas were defined. A gain scheduling engine speed PI controller was designed based on these areas. A closed loop voltage regulator was designed for the synchronous generator. The proposed control system was first validated on an APU control test bench. The test results showed the control system guaranteed the diesel APU good dynamic response characteristics while remaining stable output voltage. Finally, the APU control system was implemented on a diesel APU in an off-road series hybrid electric vehicle and a road test was conducted. The road test results showed the APU control system promised good performance in both vehicle dynamics and vehicle high voltage system.
Researchers from Tsinghua University propose a new type of EHPS system suitable for heavy-duty commercial vehicles, with the purpose of reducing the power demand of an electric motor while guaranteeing sufficient power assist. The motor is only activated on-demand, which also helps to improve fuel economy.
Journal Article
Xu Kuang, Jianqiang Wang, Keqiang Li
Abstract Transport vehicles consume a large amount of fuel with low efficiency, which is significantly affected by drivers' behaviors. An assessment system of eco-driving pattern for buses could identify the deficiencies of driver operation as well as assist transportation enterprises in driver management. This paper proposes an assessment method regarding drivers' economic efficiency, considering driving conditions. To this end, assessment indexes are extracted from driving economy theories and ranked according to their effect on fuel consumption, derived from a database of 135 buses using multiple regression. A layered structure of assessment indexes is developed with application of AHP, and the weight of each index is estimated. The driving pattern score could be calculated with these weights.
Technical Paper
Liangyao Yu, Wenwei Xuan, Liangxu Ma, Jian Song, Xianmin Zhu, Shuai Cheng
Abstract The earth's fossil energy is not limitless, and we should be taking advantage of the highly developed fields of science and technology to utilize it more efficiently and to create a fully environmentally friendly life. Considering the prodigious amount of vehicles in the world today, even a small improvement in their energy-saving performance could have a significant impact. In this paper, a new type of electro-hydraulic power steering (EHPS) system is described. It has two main advantages. First, it can significantly decrease the demand on the motor so that it can be used for a wider range of vehicles. Second, its pressure-flow characteristic can be programmed and is more flexible than hydraulic power steering (HPS) system. A prototype with a 500 W motor was applied to a truck with a front load of 2,700 kg, and static steer sweep tests were conducted to validate its feasibility.
Journal Article
Zhanteng Chang, Chao Yu, Haiyan Zhang, Shuojin Ren, Zhi Wang, Boyuan Wang, Jianxin Wang
Abstract Homogeneous Charge Induced Ignition (HCII) combustion utilizes a port injection of high-volatile fuel to form a homogeneous charge and a direct injection of high ignitable fuel near the Top Dead Center (TDC) to trigger combustion. Compared to Conventional Diesel Combustion (CDC) with high injection pressures, HCII has the potential to achieve diesel-like thermal efficiency with significant reductions in NOx and PM emissions with relatively low-pressure injections, which would benefit the engine cost saving remarkably. In the first part of current investigation, experiments were conducted at medium load with single diesel injection strategy. HCII exhibited great potential of using low injection pressures to achieve low soot emissions. But the engine load for HCII was limited by high heat release rate. Thus, in the second and third part, experiments were performed at high and low load with double diesel injection strategy.
Technical Paper
Tao Tang, Dongxiao Cao, Jun Zhang, Yan-guang Zhao, Shi-jin Shuai
Abstract The diesel particulate filter (DPF) is an effective technology for particulate matter (PM) and particle number (PN) reduction. On heavy-duty diesel engines, the passive regeneration by Diesel Oxidation catalysts (DOC) and catalyzed DPFs (CDPF) is widely used for its simplicity and low cost, which is generally combined with the active regeneration of exhaust fuel injection. This study investigated a DOC-CDPF system with exhaust fuel injection upstream of the DOC. The system was integrated with a 7-liter diesel engine whose engine-out PM emission was below the Euro IV level and tested on an engine dynamometer. PM and PN concentrations were measured based on the Particle Measurement Programme (PMP), and the number/size spectrum for particles was obtained by a Differential Mobility Spectrometer (DMS). The filtration efficiency of DPF on PN was higher than 99% in ESC test, while the efficiency on PM was only 58%.
Technical Paper
Hui Zhang, Zhibin Shuai, Junmin Wang, Hamid Reza Karimi
In this paper, we focus on the active vehicular suspension controller design. A quarter-vehicle suspension system is employed in the system analysis and synthesis. Due to the difficulty and cost in the measuring of all the states, we only choose two variables to construct the feedback loop, that is, the control law is a static-output-feedback (SOF) control. However, the sensor reduction would induce challenges in the controller design. One of the main challenges is the NP-hard problem in the corresponding SOF controller design. In order to deal with this challenge, we propose a two-stage design method in which a state-feedback controller is firstly designed and then the state-feedback controller is used to decouple the nonlinear conditions. To better compensate for the varying vehicle load, a robust load-dependent control strategy is adopted. The proposed design methodology is applied to a suspension control example.
Technical Paper
Yaodong Hu, Fuyuan Yang, Minggao Ouyang
Abstract Energy saving is becoming one of the most important issues for the next generation of commercial vehicles. The fuel consumption limits for commercial vehicles in China have stepped into the third stage, which is a great challenge for heavy duty commercial vehicles. Hybrid technology provides a promising method to solve this problem, of which the dual motor coaxial series parallel configuration is one of the best options. Compared with parallel configuration, the powertrain can not only operate in pure electric or parallel mode, but also can operate in series mode, which shows better flexibility. In this paper, regulations on test cycle, fuel consumption limits and calculation method of the third stage will be introduced in detail. Then, the quasi-static models of the coaxial series parallel powertrain with/without gearbox under C-WTVC (China worldwide transient vehicle cycle) are built. The control strategies are designed based on engine and motor performance.
Technical Paper
Guoyang Wang, Jun Zhang, Bo Yang, Chuandong Li, Shi-Jin Shuai, Shi Yin, Meng Jian
Abstract Urea selective catalytic reduction (SCR) is a key technology for heavy-duty diesel engines to meet the increasingly stringent nitric oxides (NOx) emission limits of regulations. The urea water solution injection control is critical for urea SCR systems to achieve high NOx conversion efficiency while keeping the ammonia (NH3) slip at a required level. In general, an open loop control strategy is sufficient for SCR systems to satisfy Euro IV and Euro V NOx emission limits. However, for Euro VI emission regulation, advanced control strategy is essential for SCR systems due to its more tightened NOx emission limit and more severe test procedure compared to Euro IV and Euro V. This work proposed an approach to achieve model based closed loop control for SCR systems to meet the Euro VI NOx emission limits. A chemical kinetic model of the SCR catalyst was established and validated to estimate the ammonia storage in the SCR catalyst.
Technical Paper
Chao Xu, Fuyuan Yang, Jinyu Zhang
Abstract Power-split configuration is highlighted as the most popular concept for full hybrid electric vehicles (HEV). However, the energy management and design of power-split heavy duty truck under Chinese driving conditions still need to be investigated. In this paper, the parametric design, a rule-based control strategy and an equivalent consumption minimization strategy (ECMS) for the power-split heavy duty truck are presented. Besides, the influence of a penalty factor also discussed under ECMS algorithm. Meanwhile, two different methods to search the engine operation point have been proposed and the reason of different economy performance is presented by using energy flow chart. And the simulation results show both fuel consumption can satisfy the second phase fuel consumption standard and the third phase fuel consumption standard which will be implemented in 2020, under C-WTVC (Chinese-World Transient Vehicle Cycle).
Technical Paper
Boyuan Wang, Zhi Wang, Changpeng Liu, Fubai Li, Yingdi Wang, Yunliang Qi, Xin He, Jianxin Wang
Abstract A new ignition method named Flame Accelerated Ignition (FAI) is proposed in this paper. The FAI system composes of a spark plug and a flame acceleration tunnel with annular obstacles inside. The FAI was experimentally investigated on a rapid compression machine (RCM) with optical accessibility and a single-cylinder heavy duty research engine. In RCM, the flame is significantly accelerated and the combustion process is evidently enhanced by FAI. The ignition delay and the combustion duration are both sharply decreased compared with conventional spark ignition (CSI) case. According to the optical diagnostics, the flame rushes out of the exit of the flame acceleration tunnel at maximum axial speed over 40 m/s, which exceeds 10 times that of CSI flame propagation. In radial direction, the flame curls outwards near the tunnel exit and keeps growing afterwards.
Viewing 1 to 15 of 15


    • Range:
    • Year: