Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Construction and Use of Surrogate Models for the Dynamic Analysis of Multibody Systems

2010-04-12
2010-01-0032
This study outlines an approach for speeding up the simulation of the dynamic response of vehicle models that include hysteretic nonlinear tire components. The method proposed replaces the hysteretic nonlinear tire model with a surrogate model that emulates the dynamic response of the actual tire. The approach is demonstrated via a dynamic simulation of a quarter vehicle model. In the proposed methodology, training information generated with a reduced number of harmonic excitations is used to construct the tire hysteretic force emulator using a Neural Network (NN) element. The proposed approach has two stages: a learning stage, followed by an embedding of the learned model into the quarter car model. The learning related main challenge stems from the attempt to capture with the NN element the behavior of a hysteretic element whose response depends on its loading history.
Technical Paper

Compaction-Based Deformable Terrain Model as an Interface for Real-Time Vehicle Dynamics Simulations

2013-04-08
2013-01-1197
This paper discusses the development of a novel deformable terrain database and its use in a co-simulation environment with a multibody dynamics vehicle model. The implementation of the model includes a general tire-terrain traction model which is modular to allow for any type of tire model that supports the Standard Tire Interface[1] to operate on the terrain. This allows arbitrarily complex tire geometry to be used, which typically has a large impact on the mobility performance of vehicles operating on deformable terrains. However, this gain in generality comes at the cost that popular analytical pressure-sinkage terramechanics models cannot be used to find the normal pressure and shear stress of the contact patch. Pressure and shear stress are approximated by combining the contributions from tire normal forces, shear stresses and bulldozing forces due to soil rutting.
X